

Temperature dependent FTIR analysis for the LVM band of the (¹⁴N_{As}-V_{Ga}) complex in gallium arsenide

Structure

Theoretical basics

- Vibrations of molecules, crystals and defects
- Vibrational spectroscopy
- Infrared spectroscopy

Experimental setup and enforcement

- Aim of the work
- Experimental apparatus and samples
- Enforcement

Measuring results

• Discussion and evaluation

Outlook

• Piezospectroscopy

Structure

Theoretical basics

- Vibrations of molecules, crystals and defects
- Vibrational spectroscopy
- Infrared spectroscopy

Experimental setup and enforcemer

- Aim of the work
- Experimental apparatus and samples
- Enforcement

Measuring results

• Discussion and evaluation

Outlook

• Piezospectroscopy

Molecular and crystal vibrations

- Definition: Time periodic changes of bond lengths and angles
- System motion = Interference of maximum (3*N*-6) normal vibrational modes

Molecular and crystal vibrations

- Definition: Time periodic changes of bond lengths and angles
- System motion = Interference of maximum (3*N*-6) normal vibrational modes
- In spectroscopy:

Measurement of energetic transitions between

vibronic states \Rightarrow **Bands** in spectrum

- Requirements:
 - existing dipole moment $\vec{\mu}(\vec{r})$
 - Transition dipole moment

$$\vec{R}_{mn}(\vec{r}) = \frac{d\vec{\mu}}{d\vec{r}}\Big|_{0} * \int \psi_{n}^{*}\vec{r}\psi_{m}dV \neq 0$$

 \Rightarrow temporally changing dipole moment $\overrightarrow{\mu} \Rightarrow$ infrared active band

Defect vibrations

Defects in crystal alter e.g.

- lattice structure (periodicity, symmetry, ...)
- lattice potential
- energy bands and states
- lattice vibrations (shape and frequency)
 - among them: non-propagating vibrations

concentrated at the defect position

⇒ **localized** (lattice/defect)

vibrational modes (LVM)

p. 5

Measurement of atomic vibrations

Raman	spectros	copy					
Spect	al range:	<u></u>	VIS	5			
Exper	mental te	chniqu	e: sca	attering	J		
(
Infrare	<u>d spectro</u>	scopy	<u>/</u>				
Infrare Specti	d spectro al range:	IR (= N	<u>/</u> NIR, MI	R, FIR)			
Infrare Specti	d spectro al range:	IR (= N	<u>/</u> NIR, MI	R, FIR)			
Infrare Specti	d spectro	scopy IR (= N	<u>/</u> NIR, MI	R, FIR)			

radiation source optical system sample chamber spectral apparatus detector +

UNIVERSITY OF APPLID SCIENCES MUNICH

р. 6

electronics

Measurement of atomic vibrations

Nicola Kovač, FK06, MNM

MUNICH

FTIR spectroscopy

Main component:

Michelson interferometer

Measuring results:

a) direct: Interferogram $\tilde{I}(\delta)$

21.11.2017

p. 7

FTIR spectroscopy

Colloquium lecture: Project work Nicola Kovač, FK06, MNM

р. 8

Structure

heoretical basics

- Vibrations of molecules, crystals and defects
- Vibrational spectroscopy
- Infrared spectroscopy

Experimental setup and enforcement

- Aim of the work
- Experimental apparatus and samples
- Enforcement

Measuring result

• Discussion and evaluation

Outlook

• Piezospectroscopy

(¹⁴N_{As}- V_{Ga}) complex

- First investigations in GaAs by Alt et al.
- Defect inside the Ga-As bond
 - > ¹⁴N_{As} atom + Ga vacancy
- quasi-plane structure of the N-Ga₃ molecule

(¹⁴N_{As}- V_{Ga}) complex

- First investigations in GaAs by Alt et al.
- Defect inside the Ga-As bond
 - > ¹⁴N_{As} atom + Ga vacancy
- quasi-plane structure of the N-Ga₃ molecule
- LVM band at $\tilde{\upsilon}$ = 638 cm⁻¹
 - 2D vibration || Ga₃ plane
 - Fine structure due to isotopic mass effect

Configuration	Mode (Degen.)	Calculated frequency [cm ⁻¹]		
¹⁴ N ⁷¹ Ga ₃	E (2)	637.95		
¹⁴ N ⁷¹ Ga ₂ ⁶⁹ Ga ₁	A' (1)	638.43		
	A" (1)	637.95		
¹⁴ N ⁷¹ Ga ₁ ⁶⁹ Ga ₂	A' (1)	638.19		
	A" (1)	638.67		
¹⁴ N ⁶⁹ Ga ₃	E (2)	638.67		

Colloquium lecture: Project work Nicola Kovač, FK06, MNM

p. 10

Structural analogue:

NV⁻ defect in diamond

- Investigation for nearly 50 years
- Special feature:

Manipulability of long-lived electronic spin ground states as well as optically excitable electronic transitions

⇒ predestined basic component for future quantum technology

⇒ same defect behaviour in GaAs?

NV complex in GaAs is mainly **unexplored** up to now

⇒ basic spectroscopic research as well as continuous characterization required!

My job: FTIR spectroscopy at different external perturbations

- varying temperature
- mechanical stress

(project work) (master thesis)

Investigated GaAs samples

Prefabricated sample of a GaAs ingot:

- grown by the vertical gradient freeze
 technique under N₂ atmosphere
- doping with C and O

Experimental setup

Helium refrigerator cryostat (CTI-Cryogenics)

Turbo molecular pumping station (Pfeiffer Balzers)

FTIR spectrometer

"IFS 113v" (Bruker)

- Two-stage Gifford-McMahon refrigerator (GMR)
 - Cooling process: periodic compression and expansion of He gas
 - two combined GMRs

first cold stage (≈ 35 K)

second cold stage (≈ 8 K)

O States	
copper sample holder	

- Copper sample holder at the second cold stage
- Sample mounting with conductive silver glue
- Temperature control through sensors and heating foil

conductive silver glue

temperature sensors

Protection from heat radiation by a radiation shield at the first cold stage

- Protection from heat radiation by a radiation shield at the first cold stage
- Vacuum shroud for evacuation

Experimental enforcement

Structure

heoretical basics

- Vibrations of molecules, crystals and defects
- Vibrational spectroscopy
- Infrared spectroscopy

Experimental setup and enforcement

- Aim of the work
- Experimental apparatus and samples
- Enforcement

Measuring results

• Discussion and evaluation

Outlook

• Piezospectroscopy

Absorbance spectrum at 9 K

LVM band of the $({}^{14}N_{As}-V_{Ga})$ complex at 9 K

UNIVERSITY

Munich

Identical curves for all four lines of the 638 cm⁻¹ band

Theoretical model of temperature dependent line shift:

$$\tilde{v}_{Peak}(T) = \tilde{v}_{Peak}(T=0\ K) + \frac{\delta\tilde{v}}{e^{h*c*\tilde{v}_0/k_B*T} - 1}$$

with \tilde{U}_{Peak} = peak position

- $\delta \tilde{v}$ = phonon coupling parameter
- \tilde{u}_0 = frequency of the interacting phonon

Determination of $\delta \tilde{v}$ und \tilde{v}_o with curve fitting

p. 24

Temperature dependence of the 638 cm⁻¹ band in GaAs

Summary

Obtained results for the 638 cm⁻¹ band:

- Quantity of temperature dependent
 - line shift and
 - line broadening
 - \Rightarrow Limitation of useable sample temperature range to T < 80 K for further spectroscopy
- Identical behaviour of all vibrational modes
- Phonon coupling parameters

p. 26

Structure

heoretical basics

- Vibrations of molecules, crystals and defects
- Vibrational spectroscopy
- Infrared spectroscopy

• Aim o • Experi

Experimental setup and enforcement

- Aim of the work
- Experimental apparatus and samples
- Enforcement

Measuring results

• Discussion and evaluation

Outlook

• Piezospectroscopy

Outlook – master thesis

Investigation of the $({}^{14}N_{As}-V_{Ga})$ complex under mechanical stress through **FTIR-**

based piezospectroscopy

- Analysis while applying an uniaxial stress up to 0.15 GPa
- ➤ Crystal deformation ⇒ alteration of
 lattice potential ⇒ shift and splitting
 of absorption bands
- Gain of information about
 - defect structure,
 - symmetry,

Bibliography

See references in:

 Kovač N.: Temperaturabhängige FTIR-Analyse der LVM-Bande des (¹⁴N_{As}-V_{Ga})-Komplexes in Galliumarsenid.
 Project work, University of Applied Sciences Munich, 2016

p. 29

Thank you for your attention!

I'm happy to take questions.

