

Michelson-Interferometer (Anleitung MIFAnalyse mit Matlab)

Die Software "MIFAnalyse" dient zur Auswertung von Interferogrammen im Rahmen des PHB4 Praktikumsversuches Michelson-Interferometer (MIF).

- Starten Sie das Programm durch Doppelklick auf das Desktop-Symbol
 "MIFAnalyse". ("IC Capture 2.2" muss vorher geschlossen werden.)
- Geben Sie dann im Start-Dialog die Nummer ihrer Praktikumsgruppe ein. Aus dieser Nummer wird später das Ablageverzeichnis für ihre Messungen generiert.

📣 Gruppe	nnumme	_ 🗆 🗙
Gruppennu	mmer:	
þ		
	ок	Cancel

1 Übersicht

1.1 Grundfunktionen

Michelson Interferometer SS2016 (Anleitung Matlab Programm MIFAnalyse)

1.2 Vorgehensweise zur Bestimmung des Spektrums einer Lichtquelle

- (1.3) Livebild einstellen, Kamera justieren
- (2) evtl. Kameraeinstellungen optimieren
- (3.1) Lichtquelle auswählen
- (3.2) Interferogramm von Livebild übernehmen ("Snap" in Image Tools, Toolbox 2)
- (3.3) S/W-Darstellung auswählen (Image Tools, Toolbox 2)
- (3.4) Intensitäts-Histogramm erstellen ("Profil" in Image Tools, Toolbox 2)
- (3.5) Interferometer von Weißlichtposition weg justieren, auf "Untergrund" wechseln (Image Tools, Toolbox 2) und Interferogramm aufnehmen
- (3.6) Auf "Differenzbild" (Image Tools, Toolbox 2) wechseln und Profil erstellen
- (3.7) Hg-Lampe mit grünem Interferenzfilter aufnehmen
- (3.8) Fouriertransformierte berechnen (Math Tools, Toolbox 2)
- (3.9) Fouriertransformierte vergrößern und Peaklage ermitteln (dazu Grafiktools Toolbox 1 benutzen)
- (3.10) Peaklage bei Kalibrierung Ref 1 eintragen (Kalibrierung, Toolbox 2)
- (3.11) Differenzbild einstellen (Image Tools, Toolbox 2)
- (3.12) Fouriertransformierte berechnen (Math Tools, Toolbox 2)
- (3.13) Spektrum berechnen (Math Tools, Toolbox 2)
- (3.14) Screenshot erstellen (Image Tools, Toolbox 2)

🙏 Hinweis		
ScreenShot wurde unter D:\MIF\Matlab\Interferog L_20110722T123106.jpg	ramme\SS11\Gruppe01\Glüh abgelegt	lampe_ungefiltert_ScreenSho
	OK	

(3.15) Ablage Interferogramme und Screenshots über Dateidialog durchführen

Schritt 3.5 (Untergrundbestimmung) sowie die Schritte 3.7 – 3.10 (Kalibrierung für die Umrechnung von Pixel in Wellenlänge) müssen wiederholt werden, sobald die Spiegeljustierung in irgendeiner Weise verändert wurde.

1.3 Programmstart

Start durch Doppelklick auf das Desktop-Symbol 💭 MIFAnalyse

Nog2 Walks	Segurit Colum Neuroficional Zana Neuroficional Zana Neurophilippi Neurop	Addar Glues 3 8 6533 Adder Perstanne 8 8 Addar Adder 3 Noter Course 3 8 6553	
nam 🧶 🔛 🛃 🛓 🔟 🔮 🔌 🔯			DE * 😻 0 Fo 🐗 () 20:33 🛤

Danach startet die Matlab-Software, in der wiederum das eigentliche Auswerteprogramm abläuft.

Zuerst geben Sie die Nummer ihrer Praktikumsgruppe ein. Aus dieser Nummer wird später das Ablageverzeichnis für ihre Messungen generiert. Diese Nummer erscheint auch in der Kopfleiste der Anwendung.

🚽 Grup	pennumme	
Grupper	nummer:	
p	r	
	ОК	Cancel

Dann startet das eigentliche Auswerteprogramm. Alle Funktionalitäten wurden in einer einzigen Benutzeroberfläche zusammengefaßt (siehe auch Seite 1)

perfes Device Sellings Kamera-E	Einstellungen	1		Spektru	im l(λ)	
		0.9				
	3	0.8				
		0.7				
		0.1		berec	hnetes	
		0.6		Spek	trum	
		0.5	·····	1 1	1	
Kamera-		0.4				
Livebild	4	0.3				
Sale Street and Bonnie Street, or		0.2				
		0.1				
		300	400	500 600	0 700 8	00 900
Interferogramm	Into Lichtqu	elle		λ. (nr	n]	
	Günemoz_ungehitert	· 1	Profil		Fouriertra	nsformierte I(k)
	Florforogramm • Fou	viertrafo 0.5			0.8	
	Forto - 3	sektrum	Schnit	t	Fou	rier-
Interferogramm	Losd Kalbrie	0.6 ·····	durch	-	^{0.6} tran	sformie
	Save Kolbrier	faktor Ref 1 0.4	aramm	-	0.4	
	Profil Kalbrier	tektor Ref 2 0.2 ·····	granni		0.2	
	Screenshot Mittelwe	0			0	

2 Kameraeinstellungen

2.1 Set Properties

Hier können Veränderungen am Weißabgleich und bei den Belichtungsparametern vorgenommen werden.

2.2 Color (Weißabgleich und Farbverstärkung)

Hier braucht in der Regel nichts verändert werden.

WhiteBalance	T Auto	OnePust	1		
White Balan	ce Red —		F	54 ÷	
White Balan	ce Green —	-)		54 ÷	
White Balan	ce Blue —		— J F	255 ÷	
Color Enhancem	ent 🔽 Enab	le			

2.3 Exposure (Belichtungsparameter)

Bewährte Einstellungen für Gain und Exposure sind 15 bzw. 1/10 sec.

Gain	 	15	Auto
Exposure	 		Auto
Auto Reference	 	128 ÷	
Auto Max Value	 	1/10 sec	Auto

2.4 Device Settings

Hier können Grundeinstellungen der Kamera vorgenommen werden.

Die Oberfläche ist für eine Kameraauflösung von 2048x1536 und eine Farbtiefe von 24bit ausgelegt.

Bei der Einstellung "Video Format" sollte daher der Eintrag "RGB24(2048x1536 QXGA) ausgewählt sein.

Device Name	DFx 61BUC02	*
Serial Number	0x34010295	Properties
evice Settings		
Video Norm	n/a 💆]
Video Format	RGB24 (2048x1536 QXGA)	-
	BY8 (1024x768 XGA) BY8 (2048x1536 QXGA) RGB24 (1024x768 XGA)	
Frame Rate (FPS)	RGB24 (2048x1536 QXGA) RGB32 (1024x768 XGA)	
Input Channel	RGB32 (2048x1536 QXGA) Y800 (1024x768 XGA) Y800 (2048x1536 QXGA)	
Filp Video Horizonta	Г	
Flip Video Vertical	Г	

3 Detaillierte Vorgehensweise zur Bestimmung des Spektrums einer Lichtquelle

3.1 Lichtquelle auswählen

3.2 Interferogramm von Livebild übernehmen

3.3 S/W-Darstellung auswählen

3.4 Intensitäts-Histogramm erstellen

Diese Funktion dient dazu, die Helligkeit so einzustellen, daß die Kamera nicht übersteuert wird. Sollten die Helligkeitswerte 255 übersteigen, so sollten Sie im Menüpunkt "Set Properties -> Exposure -> Gain" bzw. "Set Properties -> Exposure -> Exposure" andere Werte einstellen. Diese Einstellungen müssen während der Spektrumsbestimmung beibehalten werden!

Michelson Interferometer SS2016 (Anleitung Matlab Programm MIFAnalyse)

3.5 Untergrund aufnehmen

Interferometer von Weißlichtposition weg justieren, auf "Untergrund" wechseln und Interferogramm aufnehmen.

HIPAnalyse 19684 Grappe 01 - Kommersemester 2011		1-							-10
Set Properties Device Settings					Spek	trum I((λ)		
State Distant		1		1		1		1	
		0.9							
		0.8							
		0.7							
		0.6		1	1	1			
		0.5 -				···			
		0.4 -							
		0.3							
		0.2							
		0.1							
		200	300	400	600	600	700 800	900	
Interferogramm						λ. [nm]			
intereogramm	Lichtquele Günkenpe_ungetitert			Prof	1		Fouriertrans	sformierte I/k	0
	- Image Tools	- Muth Tools-	1	1 1		1			1
	Untergrond •	Fouriertrato	0.8			0.8			
	SAV -	Speltrum							
	Lond	Kalbrierung	0.6			0.6			
	Save	Kolbrierlaktor Nef 1	0.4			0.4			
	Profi	Kellbriertektor Het 2	0.2			0.2			
		Millelwert							
	Screenshot	1	0	500 1000	1500	2000	200 400	600 800	100

3.6 Profil von Differenzbild erstellen

Auf Differenzbild wechseln, dann Intensitätsschnitt anfertigen. Der Verlauf der Schnittlinie darf während der Spektrumsbestimmung nicht mehr verändert werden!

3.7 Kalibrierung

Die Kamera liefert Helligkeitswerte und Pixelpositionen zurück. Die Pixelwerte müssen noch in reale Ortsfrequenzen umgerechnet werden. Dazu verwenden wir die bekannte Wellenlänge der grünen Linie ($\lambda = 546,1$ nm) der Hg-Lampe.

3.8 Fouriertransformierte berechnen

Die Fouriertransformierte dieser Messung liefert das Spektrum I(k) der Kalibrierquelle zurück. Aus der bekannten Wellenlänge des Peaks läßt sich der Kalibrierfaktor ermitteln.

3.9 Fouriertransformierte vergrößern und Peaklage ermitteln

Dazu können Sie die Funktionen aus der Toolbox 1 links oben benutzen.

3.10 Peaklage bei Kalibrierung Ref 1 eintragen

Als Kalibrierfaktor tragen Sie in das vorgesehene Feld das Produkt aus dem abgelesenen Pixelwert und der Wellenlänge in nm ein. Dies können Sie auch in der Form (Pixelwert * Wellenlänge) tun.¹

¹ Zur Erhöhung der Genauigkeit können Sie eine zweite Kalibrierreferenz verwenden (z.B. die gelbe Hg-Linie mit dem passenden Interferenzfilter) und den Kalibriervorgang wiederholen. Das Ergebnis dieser zweiten Kalibrierung tragen Sie dann im Feld "Kalibrierfaktor Ref 2" ein. Das Programm ermittelt dann einen gemittelten Kalibrierfaktor.

3.11 Differenzbild erstellen

3.12 Fouriertransformierte berechnen

Jetzt können Sie die Fouriertransformierte I(k) berechnen. Diese sollte (je nach Lichtquelle) ein schmales, mitunter strukturiertes Band zeigen.

3.13 Spektrum berechnen

Jetzt haben Sie alle notwendigen Daten gesammelt, um das Spektrum I(k) der Lichtquelle berechnen zu können. Diskutieren Sie das Ergebnis!

3.14 Screenshot erstellen

Zur Dokumentation ihrer Messungen können Sie jederzeit Screenshots erstellen (letzter Button bei den Image Tools, siehe letzte Abbildung).

3.15 Ablage Interferogramme und Screenshots

Diese Screenshots werden im Verzeichnis

,,D:\MIF\Matlab\Interferogramme\(Semester)\(Gruppe)" abgelegt.

🗿 🕞 🖕 • Conputer • Datens (Di) • MSF • Madab • Sisterferogramm	ne + SSII + Gruppe00			- 10	Gruppe00 durchaucher	
Organisleren + In Bibliothek aufhehmen + Preigeben für + Dashow	Neuer Ordner					a · 🖾 6
😭 Favoriten	and the second second	COLUMN TWO IS	-	Constant of the	No. of Concession, Name	-
Cesktop		100	1 A A A A A A A A A A A A A A A A A A A			
& Downloads	Constant Sector	Concession of the	+	and the second	100000000000000000000000000000000000000	Aug 12 +1
2. Zuletzt beaucht	Childrense Societies	Childrens Saddin	Childrens Subfits	Children Eachfile	Childrene Emblish	Childrens Eachfile
	r_gruen_BG_20110	r_gruen_0F_20110	r_gruen_ScreenSho	r_rat_BG_2011070	r_rot_3F_20110701	r_ret_screenshot_
Ja Bblotheken	7017151029	7017151008	1,20110701715111	17151929	T151905	201107017152959
Sider .						
Dokumente	100	1000	ALC: NOT THE OWNER.			
Musik			C 1045010			
Videos		1.		- 1 + J - J	and (2.+)	14 1
Normetopuppe	Gililance_ungefit ert_80_20110701T 150535	Guidance_ungefit ert_F_20110701T 150518	Giuliance_ungefit ert_R1_201107017 150444	GUHampe_ungefit ert_ScreenShot_20 1107017190720	Gluhianpe_urgefit ert_ScreenShot_20 11070#7122453	GUNampe_ungefit ent_ScreentProt_20 110708T122647
Consular						
ALL WENT (C.)						
Detent (Dd)						
Daten2 (E)						
LISS TOM (Ph)						
Metrie Websites auf MSN						
Set Netzwerk						
12 Elemente						