Lecture Notes

Multibody Dynamics (mbd)

with Applications on MBS-Programs

Prof. Dr. Oskar Wallrapp

Department of Precision and Micro Technology Munich University of Applied Sciences (MUAS) Lothstrasse 34, D-80335 Munich, Germany, mail: wallrapp@hm.edu

 $http://w3-o.hm.edu/fb06/professoren/wallrapp/21_hmlectmbd_ws11.html$

Copyright 2008 .. 2011

Revision V7

Oskar Wallrapp, MUAS

Preliminary Remarks

Multibody Dynamics is one of the most prominent subject of mechanical and mechatronics engineering. It is also the logical sequel to the course in Mechanical Engineering in that it will now be dealt with multiple bodies in planar and spatial motion. In past and future engineers are involved in the development of sophisticated machines. The knowledge of their kinematics and dynamics is always present.

Notice

These lecture notes may serve as a supplement and a reference, but they do not replace the attendance of the lectures and the exercises.

Suggestions for improvements and corrections on part of the readers are always welcome by the author.

These lecture notes and all of their parts are protected under the provisions of the copy right. Usage beyond the boundaries set by the copy right is an infringement and liable to prosecution. Especially the duplication, translation and replication on microfilm as well as storage in electronic systems are forbidden without the written permission from the author.

ii

Contents

Part I - Rigid Body Dynamics

1	Introduction to Multibody Dynamics	1
	1.1 Introduction	1
	1.2 Multibody System Applications	2
	1.3 Multibody System Characterization	6
	1.4 Overview of Multibody System Programs	7
	1.5 First Usage of Multibody Programs	9
	1.5.1 A First Model - The Pendulum	9
	1.5.2 Solution Process done by WorkingModel	11
	1.5.3 Solution Process done by SIMPACK	13
	1.5.4 Solution Process done by the Maple Script RMBS	19
	1.6 Notations	22
	1.6.1 General Notations	22
	1.6.2 MBS-Notation of Variables and there Superscripts	27
	1.6.3 Notations of the Script and the MBS-Program SIMPACK	29
	1.7 Standard Tables	31
	Table 1: Mass Moments of Inertia for Homogeneous Lines and Areas	31
	Table 2: Mass Moments of Inertia for Homogeneous Bodies	32
	Table 3: Material Properties	33
	Table 4: Common Finite Element Types	34
	1.8 List of Variables in the Manuscript and RMBS Code	35
	1.9 References	39
	1.9.1 Referring to Multibody Systems	39
	1.9.2 Referring to Finite Element Method	40
2	Kinematics of Rigid Multibody Systems	41
	2.1 Basic Kinematics	41
	2.1.1 Coordinate systems – reference frames	42
	2.1.2 A Vector in frames K^1 and K^2 – rotation matrix	43
	2.1.3 Spatial rotations	44
	2.1.4 Properties of rotation matrices	45
	2.1.5 Computation of angles from a given rotation matrix	46
	2.2 Kinematics of a rigid body using the MBS notation	47
	2.2.1 Position and orientation of a body	47
	2.2.2 Usage of three frames	48
	2.3 Velocity and Acceleration of a Body	49
	2.3.1 Angular velocity and acceleration of the body reference frame	49
	2.3.2 Linear velocity and acceleration of the body reference frame	51

iii

Course on Multibody Dynamics - V7 iv		Oskar Wallrapp, MUAS	
2.3.3 Angular velocity and acceleration of a m	narker k	51	
2.3.4 Linear velocity and acceleration of the n	narker k	52	
2.4 State Variables of a Rigid Body		53	
2.5 Relative Kinematics of Body Interaction El	ements	56	
2.6 Constraint Equations of Joints		60	
2.6.1 Implicit constraint equations		62	
2.6.2 Explicit constraint equations		65	
2.6.3 Summarizing of constraint equations		66	
3 Dynamics of Rigid Multibody Systems		71	
3.1 Linear and Angular Momentum, Rigid Bod	ly Data	71	
3.2 Dynamical Equations of Motion of a Rigid	l Body	74	
3.2.1 Newton and Euler Equations		74	
3.2.2 Jordanian's Principle		78	
3.3 Consideration of Constraint Forces and To	orques due to Joints	80	
3.4 Consideration of Applied Forces and Torq	ues	82	
3.4.1 Gravitational force		82	
3.4.2 Forces and torques of force elements		83	
3.5 Multibody System Equations of Motion		86	
3.5.1 The DAE-System		86	
3.5.2 The ODE-System		87	
3.6 Solution Methods		89	
3.6.1 Forward Dynamics		89	
3.6.2 Inverse Dynamics		89	
3.6.3 Static Problems		89	
3.6.4 Linearization of the Eq. of motion		90	
3.6.5 Eigenvalue Analysis		91	
3.7 Summary About Constraint Equations and	Their Formalisms	92	
3.7.1 Find the implicit constraint equations		92	
3.7.2 Find the explicit constraint equations vi	a recursive algorithm	93	
3.8 Additional Dynamical Subjects		96	

Part II - Flexible Body Dynamics

in preparation