Requirements:

1) Write the following header (Kopfzeile) on the top of the report and all the files:

MFM120-MBD-WS2011
Project2 Group xx

Personal No. o List	Fam. Name	First Name	Sem-Ident	Mat.-No.

Please add lines for each user of the group.
2) A group has maximum 2 persons. The groups are defined before handout and can not changed later.
3) I want to get a report in paper form, simple fixed. Please clip together the report without folder, etc. One group has one report. The hand over must be in time and in post \qquad case near the faculty office and Prof. room.
4) I want a folder compressed by zip format containing the pdf files and scripts of the used MBS package and all other files.
5) Send me the file via mail to Wallrapp@hm.edu.
Mail-Subject:
mbd_project1_groupxx
<< very important. attached File-Name: mbd_project1_groupxx.zip << very important, other files are not accepted! Never use "Umlaute" in the text of programs and file names !!!
6) The project is a part of the exam in MBD and will be valid by points / later by a mark.

Project 2 contains max. 40 points. A good layout gives 3 points extra!
Each user in a group will get the same points. The project has a workload of about 16 hours per student.

Simulation of a 2 Body MBS:

Fig. 1: Double pendulum with helical joint in the gravitational field.
Fig. 1 shows the 2 body pendulum in the gravitational field and in the initial state.
Body 1 is joined by a helical joint of thread length pHel to ground (body 0): marker 1 on body $0->$ marker 2 on body 1 .
Body 2 is connected by a hinge along the y_{2} axis: marker 4 on body $1->$ marker 5 on body 2 .
There are also some force elements:

1) Between marker 1 and 2 consider rotational Coulomb friction like a function $L_{a}^{1}=F_{n} R_{1} \mu\left(\dot{\beta}^{1}\right)$, where F_{n} is normal force, μ the friction coefficient and $\dot{\beta}^{1}$ the angular velocity of the helical joint; herein use the simplified function based on $\mathrm{y}:=\mu \max * 2 / \mathrm{Pi}^{*} \arctan \left(30^{*} \mathrm{x}\right)$; (please test it using Maple).
2) Between marker 4 and 5 consider rotational spring to model the body's contact of body 1 and 2 . Please use fct. like $L_{a}^{2}=f\left(\beta^{s=2}\right)$, where $\beta^{s=2}$ is the angle of the hinge joint; herein use the simplified function $\mathrm{f}:=\mathrm{fmax} *(\mathrm{x}-$ $1)^{\wedge} 9$;, where x must be scaled belongs to 0 .. $\beta . . \pi / 2$ from one contact side to the next and fmax is torque at each contact side. (please test it using Maple). We add also a lin. rot. damper with damping value $\mathrm{d}_{T 2}$.
3) There is a linear rotational spring with stiffness $k_{T 3}$ between marker 7 and 2 to drive body 1 . In the initial state the spring is pre-stressed by $\beta_{0}=-\pi$ rad to produce a positive rotation of body 1 .

Use the data (in addition the data given in figs 2 and 3:
$p H e l=8 \mathrm{~mm}, \mathrm{~g}=9.81 \mathrm{~m} / \mathrm{s}^{\wedge} 2, \mu \mathrm{max}=0.5, F_{n}=(\mathrm{m} 1+\mathrm{m} 2)^{*} \mathrm{~g} \mathrm{~N}, \mathrm{fmax}=0.001 \mathrm{Nm}, \mathrm{d}_{T 2}=0.001 \mathrm{Nms} / \mathrm{rad}$, $k_{T 3}=0.002 \mathrm{Nm} / \mathrm{rad}, \beta_{0}=-\pi \mathrm{rad}, \mathrm{t}$ End $=4 \mathrm{sec}$.

Tasks:

1) <8 points $>$

Draw a mbs sketch (exploded drawing) including all bodies, markers, joints, force elements, required frames;
List all bodies, markers, joints, force elements, required frames (in tables) and describe briefly. Explain DOF and generalized coordinates of the mbs.

2) <9 points $>$

Referring to the desired body frames compute the required mass body data of body $1,2$.

Herein consider, that body 1 has an additional hole (use R1 for the out-side radii of the screw.), the material is brass and body 2 is formed like a H -profile. The material is steel.

Fig. 2: Body 1.

Fig. 3: Body 3.
3) < 10 points >

Set-up the model using the maple script RMBS-V60 or SIMPACK

* complete the file MBS_Sys-proj1_groupxx.mw
* show me the set of input data (with comments) and plot initial state of the mbs in 3D view.

4) <10 points $>$

Provide the solution in time domain for \mathbf{t} from 0 to tEnd (steady state solution)
in file MBS_SoluODE-proj1_groupxx.mw
Show me the main results in the report:

* initial values (including accelerations)
* time history in plots and final values at $\mathrm{t}=\mathrm{t}$ End
containing state variables, their time derivation
path of marker 6
torques of force elements
* animation of mbs

5) <3 points $>$

Discuss the results

