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Modal Representation of Stress in Flexible Multibody Simulation
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Abstract. An application of the floating frame of reference formulation together with the nodal approach using
quasi-comparison functions as shape functions allows an efficient analysis of stress in the flexible bodies of a
multibody system. This is demonstrated using two simple examples. They are chosen to demonstrate the effects
of various choices of shape functions and associated body reference frames. In the floating frame of reference
formulation the equations of motion are linearized assuming the deformations to be small. The quasi-comparison
functions, i.e. shape functions, can be selected in ways to increase the range of validity of the linearized equations
of motion. The latter goal is achieved as well by so-called substructuring techniques. Combining both of the
methodologies, one obtains efficient models for flexible multibody simulation.
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1. Introduction

The floating frame of reference formulation for the modelling of flexible bodies in multibody
systems has been reviewed in a companion paper [1]. The method is based on a separation
of the flexible body motion into a reference motion and deformation. A unique definition of
the two parts of the motion requires the definition of a body reference frame. This definition
affects the choice of the shape functions, used in [1, equation (21)] to represent the body de-
formation. When modelling flexible bodies in multibody systems as finite element structures,
the so-called nodal and modal approaches may be applied to describe body deformation [1,
section 7]. The reduction of the number of system variables in the modal approach is highly
desirable to increase computational efficiency, but the methodology results in the fundamental
problem of selecting shape functions that represent body deformation and, in particular, in-
ternal forces with an appropriate accuracy. This problem appears as well when modelling
beams as suggested by [1, equations (41–44)]. The selection of shape functions cannot be
made in a formal way. It depends on the analyst’s judgement and it is emphasized in [1,
figure 8] by the circle in the flowchart for the computation of the standard body data.

The reference motion of a flexible bodyi in a multibody system is large in general, but
its deformation as represented by the variablesui(R, t) andϑi(R, t) (see [1, equation (21)])
remains small in many applications. In such cases the computational efficiency of a system
simulation can be increased by linearizing the dynamical equations of motion, equation (26)
in [1], for small deformation. The linearization procedure may require the consideration of
geometric stiffening, applying the general rules given in [1, section 6].
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An additional possibility to improve computational efficiency is provided by the modal
approach. The resulting problem of selecting the shape functions is of particular importance
for the representation of the stresses in the flexible system bodies. Often, flexible multibody
system codes provide good results to describe the body deformation, whereas the represent-
ation of stresses cannot be used for system evaluation. To overcome such deficiencies, it has
been proposed to determine the stresses by post-processors, using finite element codes [2]. But
an acceptable representation of internal forces in the flexible system bodies can be obtained
with multibody codes as well when using quasi-comparison functions [3–7]. As mentioned
in [1, sections 1 and 7], a set of quasi-comparison functions may be obtained by combining
eigenfunctions and static deformation modes.

A good representation of stress is obtained automatically by methods, which generalize
the concepts of finite elements to multibody systems [8]. A general problem in such meth-
ods is to model large rotational motion of the elements [9]. System simulations based on
the corresponding nonlinear finite element formulations often result in high computational
costs [10]. To avoid them, various approximations have been proposed. An example is [11,
12], where multibody and finite element codes are coupled to obtain an iterative calcula-
tion scheme for flexible multibody analysis: the flexible bodies are assumed to be ‘frozen’
in their deformed configuration when a multibody code is applied to compute the system
motion and the resulting inertia and constraint forces upon the bodies. Using these forces in
a finite element code, the body deformation and the stresses are updated neglecting the coup-
ling effects between rigid body motion and deformation. A method taking into account such
effects has been described in [13] and literature cited there. Procedures of how to compute the
stresses based on the floating frame of reference formulation have been proposed in [14, 15].
In the latter reference stress influence coefficients are introduced to increase computational
efficiency. The methods are proposed for fatigue life prediction and stress-safe design. The
former application is discussed in [16] as well. Among others, the computational benefits of
symbolic code generation are analysed. The stresses are computed by the modal approach
using beam models and applying the general data structure from [1, figure 8].

The representation of stress by quasi-comparison functions in the floating frame of ref-
erence formulation will be discussed here together with the two possibilities to reduce com-
putational costs, i.e. the application of the modal approach and of the linearized equations
assuming the deformations to be small. The discussion is based on two simple examples.
The first one gives an analysis of the effects of various shape functions on the representation
of deformation and in particular of internal forces. An application of the linearized equa-
tions requires the deformations to be as small as possible. In the second example it will be
demonstrated that a wide range of applicability of the linearized equations may be achieved
by selection of the shape functions and by subdividing the flexible bodies as proposed in [17].
A combination of the two methodologies provides efficient system equations for an analysis
of flexible multibody systems.

2. Effects of Shape Functions on Representation of Deformation and Stress

2.1. STUDY MODEL

For a discussion of the choice of shape functions, the structure shown in Figure 1 is considered.
It consists of a flexible beamAB, which is connected to a rigid bodyBC by a bracket joint,
allowing no relative motion. The beam is attached at pointsA andD to a fixed, supporting
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Figure 1. Rotating beam structure supported by a spring.

Figure 2. Multibody model of the beam structure. Node labels are encircled. General node-, joint- and force
element-labels arek, s andr, respectively. The arrows at the joints and force elements show the way, in which the
relative motion across those interconnections is defined.

structure. AtA, there is a revolute joint together with a rotational damper. PointD is connected
with C by a spring. External forces acting on the structure are the result of gravitational
acceleration, defined by the vectorg. The notation used here is as described in [1].

The influence of shape functions is studied by analyzing the
• equilibrium configuration I, in which the structure is supported by the spring;
• motion and the equilibrium configuration II, obtained after cutting the spring atC;
• internal forces in the beamAB in the equilibrium configuration II.

The problems are solved using the multibody model shown in Figure 2. Origin and basis of an
inertial frame (identical with the global reference framei = 0) are shown in Figure 1. In this
frame the coordinates of the gravitational acceleration are[0,−g,0]T , g = 9.81 m/s2. The
distance of the pointsA andD is `0 = 2 m.

To represent the motion of bodyi = 1 by the variables given by [1, equation (22)], a
body reference frame has to be defined. The three types of frames indicated in [1, figure 5]
(the tangent-, chord- and Buckens-frame) will be compared. Figure 3 shows a chord-frame,
the variables of [1, equation (22)] representing its motion and the variablesw1

1(x, t) and
w1

2(x, t), x ≡ R1, describing the deformation of the beam (see also [1, figure 6]). The data
of the beam model are: length̀1 = 2 m, heighth1 = 0.003 m, area of cross section
A1 = 0.0006 m2, area moment of inertia of the cross sectionJ 1 = 4.5 · 10−10 m4, density
ρ1 = 8400 kg/m2 and modulus of elasticity (Young’s modulus)E1 = 7 · 1010 N/m2.

Body 2 is rigid, and Figure 4 shows the location and orientation of its reference frame
{O2,e2}. In this frame the data of the body are: location of center of massc2 = [0.2,0,0]T m
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Figure 3. Notation used to represent the motion of bodyi = 1.

Figure 4. Notation used to represent the motion of bodyi = 2.

and moment of inertiaI 2 = 0.32 · 10−10 kg m2, given with respect to the originO2 of the
body frame. The length of the body is`2 = 0.4 m.

The nodes on the bodies are specified by matricesRk,i and0k,i, introduced in [1, equa-
tions (2–4)]. For most of the nodes,Rk,i = 0 and0k,i = E. The matrices having different
values are

R2,1 =
 1

0
0

 , R3,1 =
 2

0
0

 , R5,2 =
 0.4

0
0

 ,
R6,0 =

 2
0
0

 , 03,1 =
 0 1 0
−1 0 0
0 0

 (1)

with theRk,i given in m. Nodek = 2 on bodyi = 1 is not required for attachment of a system
element – it is used to define a point for evaluation of deformation and internal forces.

The axis of the rotational joint atA is given in the basise1 by [0,0,1]T . The force element
r = 4 at this joint results in a torque aboute1

3, depending linearly on the relative angular ve-
locity across the interconnection – the damping factor is 40 N ms/rad. The spring, connecting
the nodesk = 5 andk = 6, has an undeformed length of 0.1 m, and its stiffness is 300 N/m.

2.2. DEFINITION OF THE DEFORMATION MODELS

To solve the problems mentioned above, three groups of models are used to represent the
deformation of body 1. They correspond to a chord-, tangent- and Buckens-frame and are

schwerta
0
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distinguished by labelsC, T andB, respectively. The displacements of the beam’s axis result
from stretching and bending and they are represented byn1

q = nq1 + nq2 shape functions in
the form

w1
1(x, t) =

nq1∑
i=1

W 1
1j (x) q

1
j (t), w1

2(x, t) =
nq2∑
j=1

W 1
2j (x) q

1
k (t) where k = nq1+ j. (2)

A variety of models, all of them using the chord-frame as the body reference frame, will
be considered first. In these models the deformation of bodyi = 1 is described as suggested
by Equation (2), using various numbers and types of shape functions. The models are charac-
terized by identifiers, which are combinations ofC and consecutive numbers. In addition to
the identifiers, the numbersn1

q(t) of variablesq1
j (t), which are used to represent deformation,

are given in parentheses. The models are:

C1(2): The first eigenfunctionsW 1
11(x) andW 1

21(x) for longitudinal and lateral vibrations of
a simply supported beam are selected to represent deformation.

C2(6): Same as C1, but 3 functionsW 1
1j (x) and 3 functionsW 1

2j (x).
C3(15): Same as C1, but 5 functionsW 1

1j (x) and 10 functionsW 1
2j (x).

C4(6): Same as C2, but the shape functions used here are based on eigenfunctions of a beam,
which is supported by a rotational joint atx = 0. By consequence, a (rotational) rigid
body mode appears among the eigenfunctions. It is deleted and to obtain the shape
functions. The remainder of the eigenfunctions is transformed, as suggested in [18],
to satisfy the chord-frame boundary conditions.

C5(2): In this caseW 1
11(x) andW 1

21(x) are the static deformations of a simply supported
beam due to a longitudinal force and to a torque at nodek = 3, respectively.

C6(4): Combination of C1 and C5.
C7(8): Combination of C2 and C5.

The shape functions, used in these models, are shown in Figure 5 for C2, C4, C5 and C6. The
functions used in C1 are a subset of C2, and in case of C3 additional, higher modes of the type
shown for C2 are considered.

In the second group of models atangent-frameis used as a body reference frame. Its origin
coincides with the origin of the chord-frame shown in Figure 3. Using notation similar to the
one introduced for the C-models, the tangent-frame models are:

T2(6): Same as C2, but eigenfunctions of a cantilever instead of a simply supported beam.
T7(8): Same as C7, but eigenfunctions and static forms of a cantilever beam, i.e. 3 vibration

modes for both, longitudinal and lateral motion, and static forms due to a force and
a torque at nodek = 3.

The shape functions, used in the two T-models, are shown also in Figure 5.
Finally, a Buckens-frameis chosen for{O1,e1}. The location ofO1 and the orientation

of e1 satisfy the linearized equations (36) from [1]. This implies thatO1 coincides with the
center of massCM1 of the deformed beam. In this case, eigenfunctions of the free-free beam
are used, with the rigid body modes deleted. The models considered in this study are:

B2(6): Same as C2, but with eigenmodes of the free-free beam.
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Figure 5. Mode shapes used to represent the deformation of bodyi = 1. Dotted and solid curves correspond to
longitudinal and lateral motion, respectively. In all of the diagrams the horizontal axes represent values ofx and
in vertical direction the function valuesW1

1j (x) andW1
2j (x) are given.

B7(8): B2 combined with C5 – by analogy with C7.
B8(9): B7 with an additional static deformation mode of a simply supported beam, due to a

linearly distributed load in the longitudinal direction.

The shape functions, used in these models, are shown in Figure 5. The diagram for B8 shows
the longitudinal modes only.

The models B7(8) and B8(9) require a comment. The quasi-comparison functions, used in
[1, equation (21)] to approximate the solution of the partial differential equations describing
body deformation, have to be elements of a complete set of functions, they have to satisfy
the geometrical boundary conditions and a linear combination of them has to be capable to
satisfy the dynamical boundary conditions. In case of a Buckens-frame the body deformation
is described by partial differential equations satisfying the constraintsOJi = 0 andOHi =
0 (see [1, section 5]). The constraints guarantee the property of the body reference frame
described by [1, equation (38)] and they are fulfilled automatically when using free-free modes
after deleting the rigid body modes. When augmenting the free-free modes by static modes as
in case of the models B7(8) and B8(9) one has two choices: one considers the constraints [1,
equation (36)] when solving the multibody system equations or one renounces exploiting any
properties of the Buckens-frame resulting from these constraints. In the latter case the body
deformation is no longer a minimum as stated by [1, equation (38)]. In this study the second
option has been used for the models B7(8) and B8(9).

In all of the models, mentioned heretofore, the modal approach has been used to describe
the deformation of the beami = 1 shown in Figure 3. A reference solution (ref) will be gen-
erated using the nodal approach. In thisreference model, the bodyi = 1 is subdivided into 10
finite beam elements, in which a tangent-frame is used to represent the element deformation.
The displacement field of the elements is interpolated in this model by linear polynomials
for the longitudinal motion and by cubic ones for bending [19]. The results will be compared
also with those obtained by the absolute nodal coordinate formulation (anc), which has been
proposed recently [20]. A large reference motion of a flexible body is described by the nodal
coordinates of a finite element model in this methodology [21]. The model of the beam used
in this formulation has 20 elements. The displacements of the elements are interpolated by
third order polynomials and the deformations are defined using a chord-frame [22].
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Figure 6. Equilibrium configurations I and II of the beam structure.

2.3. DEFORMATION RESULTS

The three problems, described at the beginning of Section 2.1, have been solved using the
C1-model and both, the descriptor- and the state-space-form of the system equations. The
equilibrium configurations I and II, as obtained with the Lagrangian equations of type 1, are
shown in Figure 6. The motion animation of the structure found by integration of the state
space equations is shown in Figure 7. In this figure, the structure configuration at selected
times and the time history of the angleα3,1

3 , shown in Figure 6, are depicted.
The parameters of the model have been chosen in such a way that the effect of geometric

stiffening becomes important. As a consequence, the result, given in Figure 6 when neglecting
those geometric stiffening terms, turns out to be wrong when compared with the solution of
the reference model and with the solution, which has been obtained with a multibody code,
based on the absolute nodal coordinate formulation [22]. For comparison, the equilibrium
configuration II of a model, in which bodyi = 1 is rigid, is shown in Figure 6 as well.

All of the results on the motion and deformation of the structure are in a good agreement
with the reference solution for all the models defined in the preceding section. This statement
is detailed in Table 1. It contains results for the two equilibrium configurations I and II as
obtained with various models.

The resultsIρk,i1 andIρk,i2 describe the location of the nodesk, i = 2,1 andk, i = 3,1 in
the inertial frame and the anglesαk,i3 with k, i = 1,1 andk, i = 3,1 represent the orientation
of ek,i with respect toeI (see Figure 6). For the configuration I the results are given as obtained
by the models C1 and C7. Their comparison demonstrates that the complex model C7 does
not significantly improve the results obtained with the simple model C1. Both of them are
found to be in a good agreement with the reference solution and the results provided by the
absolute nodal coordinate formulation. For the configuration II, results are presented in Table 1
as obtained with the C-, T- and B-models together with the reference resultsref and anc.
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Figure 7. Motion of the beam structure from equilibrium configuration I to equilibrium configuration II.

Table 1. Results describing the deformation of bodyi = 1 in the equilibrium configurations I and II.
DisplacementsIρk,iα are given in mm and anglesαk,i3 in 10−3 rad.

Configuration I Configuration II

Model C1 C7 C2 C5 C7 T2 T7 B2 B7 ref anc

Iρ
2,1
1 840.6 837.0 –20.5 –12.7 –19.8 –18.9 –20.0 –21.0 –19.7 –19.9 –19.8

Iρ
2,1
1 –5.69.8 –577.9 –1001 –1002 –1001 –1000 –1000 –1001 –1001 –1000 –999.8

Iρ
3,1
1 1825.5 1825.8 –137.0 –141.1 –136.1 –135.9 –136.3 –136.4 –136.1 –136.0 –136.0

Iρ
3,1
2 –0.817 –816.4 –1995 –1995 –1995 –1999 –1999 –1995 –1995 –1999 –1991

α
1,1
3 –698.4 –721.4 –1576 –1564 –1581 –1580 –1581 –1567 –1580 –1581 –1581

α
3,1
3 1427.7 1410.7 –197.5 –225.2 –237.8 –161.7 –237.1 –178.3 –237.8 –236.9 –238.3

They clearly demonstrate that all the models can be used to describe the displacementsIρk,iα ,
excluding the model C5, which uses static modes only. In case of the anglesα

k,i
3 deviations

between the results obtained with the various models are more pronounced.
In summary, the use of eigenfunctions as shape functions leads to a good representation

of the system motion and of the displacements due to body deformation. Angle variables
describing the deformation of the beam investigated here are still acceptable but the stresses
due to body deformation, as obtained with the various models, differ significantly. This will
be demonstrated now.

2.4. STRESSRESULTS

The forces and torques, required for the discussion of the internal forces due to body deform-
ation, are defined in Figure 8. SymbolsFk,i andLk,i denote forces and torques applied at the
nodesk on bodyi (see [1, figure 3]). They result from force elementsr and from jointss at
the nodes on the bodies. Both,Fk,i andLk,i, are resolved in the basesei, shown in Figures 3
and 4 fori = 1 andi = 2, to obtain the coordinatesFk,iα andLk,iα . These coordinates are
determined in an analysis of the multibody system using the laws for the forces and torques
across the force elements and the generalized constraint forces across the joints.
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Figure 8. Interaction-forces and -torques upon the bodies of the beam structure together with internal force and
moment due to deformation of the beam.

VectorsF 1
n(x) = F 1

n (x) e
1
1 andL1

b(x) = L1
b(x) e

1
3 represent the normal force and the

bending moment applied at a cross sectionx of the beam. The functionsF 1
n (x) andL1

b(x) are
found from the variables describing deformation by using the material law

S1
11(R) = E1G1

11(R). (3)

HereS1
11(R) andG1

11(R) represent stress and strain at a pointR of the beam (see [1, figure 6]).
Whenx ≡ R1 is fixed, the stresses and strains are identical for any values ofR3 in case of
the planar problem shown in Figure 3. Therefore, it is sufficient to considerS1

11(R1, R2) ≡
S1

11(R1, R2,0) andG1
11(R1, R2) ≡ G1

11(R1, R2,0). From the stress distributionS1
11(R1, R2)

one obtains the normal stressS1
n (due to stretching) and the shear stressS1

b (due to bending) as

S1
n(x) = S1

11(x,0) and S1
b(x, R2) = S1

11(x, R2)− S1
n(x), x ≡ R1. (4)

The maximum values of shear stress are obtained forR2 = ±h1/2. The effects of the stresses
S1

11(R1, R2) distributed over the rigid cross section at the pointx = R1 of the beam’s axis can
be described by a single forceF 1

n(x) atR2 = 0 and a momentL1
b(x). These resultants of the

system of forces acting upon the rigid cross sectionx are found to be

F 1
n (x) = A1S1

11(x,0) and L1
b(x) =

2J 1

h1
(S1

11(x, h
1)/2)− S1

n(x)). (5)

The strain distribution appearing in Equation (3) is given for an Euler–Bernoulli beam by

G1
11(R1, R2) = w′11 (x)− R2w

′′1
2 (x)+

1

2
(w′12 (x))

2, x ≡ R1. (6)

The deformationsw1 andw2 in Equation (6) are obtained from the variablesq1, appearing
in [1, equation (22)], by applying the relations given in [1, equation (43)] forϑ1 ≡ w3 ≡ 0.
The nonlinear expression(w′12 )

2 in Equation (6) serves to develop the geometric stiffening
terms due to longitudinal forces as described in [23]. The forcesF 1

n (x) and momentsL1
b(x)

are obtained using the linearized strain-displacement relations (6) in Equations (3) to (5).
The two functionsF 1

n (x) andL1
b(x) have to satisfy dynamical boundary conditions atx =

0 andx = `1

F 1
n (0) = −F 1,1

1 , L1
b(0) = −L1,1

3 and F 1
n (`

1) = F 3,1
1 , L1

b(`
1) = L3,1

3 . (7)
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Figure 9. Normal forceF1
n (x) and bending momentL1

b
(x) in body 1 as obtained with the chord-frame-models

for the equilibrium configuration II.

Some of the shape functions shown in Figure 5 violate these boundary conditions. In such
cases the representation of stress described by the functionsF 1

n (x) andL1
b(x) turns out to be

poor.

2.4.1. Representation of Stress Using the Chord-Frame-Models
A static analysis, based on the model C1, yields for the equilibrium configuration I the values

F
1,1
1 = −49.4 N, F

3,1
1 = 9.0 N,

L
1,1
3 = 0 Nm, L

3,1
3 = −6.9 Nm,

}
whereas

{
F 1
n (0) = 44.3 N, F 1

n (`
1) = 0 N,

L1
b(0) = 0 Nm, L1

b(`
1) = 0 Nm.

(8)

It is obvious that the shape functions used in the C1-model cannot satisfy the dynamical
boundary conditions of Equation (7). A similar result is obtained by an analysis of the equi-
librium configuration II. In this case, the model C1 results in

F
1,1
1 = −157.4 N, F 3,1

1 = 58.7 N,
L

1,1
3 = 0 Nm, L

3,1
3 = −11.6 Nm,

}
whereas

{
F 1
n (0) = 145.7 N, F 1

n (`
1) = 0 N,

L1
b(0) = 0 Nm, L1

b(`
1) = 0 Nm.

(9)

Because of the violation of the dynamical boundary conditions, the representation of the
internal forcesF 1

n (x) and momentsL1
b(x) is not satisfactory. Such behaviour, i.e. good motion

and deformation results and poor stresses, suggests that one may determine the deformations
by multibody simulation programs and compute the stresses, using post-processor finite ele-
ment codes [2, 12]. However, an acceptable representation of stresses can also be obtained
with multibody models using quasi-comparison functions. This will be demonstrated now,
considering all of the chord-frame models introduced above.

Figure 9 shows the functionsF 1
n (x) andL1

b(x) for the equilibrium configuration II, when
using the chord-frame models. The reference solution obtained with the finite element method
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is denoted byref in the diagrams. In the reference model the displacement field of the finite
elements is interpolated by linear polynomials for the longitudinal motion. This explains,
why the element normal forces are constant, resulting in the discontinuities of the reference
solution forF 1

n (x) in Figure 9. The points (•), marked in the diagrams atx = 0 andx = `1,
represent the values of the forcesFk,i1 and the torquesLk,i3 at the nodesk = 1 andk = 3, as
obtained with the reference solution from the constraint forces in the joints. These results are

F
1,1
1 = −157.7 N, L

1,1
3 = 0 Nm, F

3,1
1 = 58.8 N, L

3,1
3 = −11.44 Nm. (10)

The internal forces at the boundariesx = 0 andx = `1 found with the reference solution have
slightly different values. They are, together with the forceF 1

n and the momentL1
b at the node

k = 2 on bodyi = 1

F 1
n (0) = 152.8 N, F 1

n (`
1/2) = 108.3 N, F 1

n (`
1) = 63.8 N,

L1
b(0) = 0 Nm, L1

b(`
1/2) = −2.47 Nm, L1

b(`
1) = −11.37 Nm. (11)

The results presented in Figure 9 demonstrate that the eigenfunctions used in the models C1
to C3 cannot satisfy the dynamical boundary conditions. The functions minimize a mean value
of the errors, as suggested by the Ritz method. By adding more functions, the error becomes
smaller, but as demonstrated clearly by the results of the C3-model forL1

b(x), the solution
starts to oscillate heavily in the neighbourhood ofx = `1 when using higher numbers of eigen-
functions, which are unable to satisfy the dynamical boundary conditionL1

b(`
1) = L3,1

3 . Such
a behaviour is similar to Gibb’s phenomenon, as known from the representation of discontinu-
ous functions by Fourier series, e.g. [24, p. 392]. Selecting the transformed eigenfunctions of
a beam supported by a rotational joint atx = 0 does not improve the solution, as demonstrated
by the results obtained with the C4-model. The results of the model C5 demonstrate that the
static deformation modes yield nonzero values for all of the forces and moments, which had
been enforced by the eigenfunctions to disappear. The representation ofF 1

n (x) andL1
b(x) by

the static modes only is poor. But combining their capability to satisfy the dynamical boundary
conditions with the ability of the eigenfunctions to representF 1

n (x) andL1
b(x), convergence

is significantly improved, as demonstrated by the results of the C6- and C7-models.

2.4.2. Representation of Stress Using the Tangent-Frame-Models
Figure 10 shows the results, when using a tangent-frame (the T-models, defined previously).
Eigenfunctions and static deformation modes for the longitudinal motion are identical for
chord- and tangent-frames, which implies that the force representations, obtained by the C-
and T-models, do not differ. This explains why Figure 10 showsL1

b(x) only. The chord-frame
results to be compared with the tangent-frame results are shown in Figure 10 again. The T-
models yield larger errors than the corresponding C-models. The errors result from violation of
the dynamical boundary condition atx = 0, which is enforced by the eigenfunctions satisfying
the chord-frame conditions (see diagrams for T2 and C2). As in case of the C-models, the
representation ofL1

b(x) is improved, when adding static modes, but the errors of the T-models
remain larger than those obtained with the corresponding C-models.

2.4.3. Representation of Stress Using the Buckens-Frame-Models
Finally, Figure 11 shows the functionsF 1

n (x) andL1
b(x) when using a Buckens-frame defined

by the linearized equations (36) from [1]. These conditions are satisfied automatically, when
using eigenfunctions of a free-free beam after deleting the rigid body modes. By contrast
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Figure 10. Normal forceF1
n (x) and bending momentL1

b
(x) in body 1 as obtained with the tangent-frame-models.

For comparison, the results determined with the corresponding C-models are presented, too.

Figure 11. Normal forceF1
n (x) and bending momentL1

b(x) in body 1 as obtained with the Buckens- or
mean-axes-frame-models together with the results provided by the corresponding C-models.

with the eigenfunctions of a simply supported beam, satisfyingF 1
n (0) 6= 0, those of a free-

free beam yieldF 1
n (0) = 0. As a consequence, the errors in the representation ofF 1

n (x) are
increased in the model B2 as compared to C2. When adding the static modes used in the C5-
model to obtain the B7-model, the representation of the momentL1

b(x) is improved, providing
an approximation similar to the one obtained by the model C7. But the representation of
the forceF 1

n (x) with the B7-model is still insufficient as compared to the C7-model. The
reason is simple: by adding the static mode for longitudinal deformation of the C5-model to
the eigenfunctions of the free-free beam, one has the freedom to represent nonzero forces at
x = 0 andx = `1, but these have to be identical (see diagram B7 forF 1

n (x). Only after
adding another static mode to obtain the B8-model, different forces atx = 0 andx = `1

can be represented by the system of static forms and eigenfunctions. As a consequence, the
B8-model yields an approximation ofF 1

n (x) of roughly the same accuracy as C7. The plots
for the two models C7 and B8 cannot be distinguished in a diagram as shown in Figure 11.

2.5. CONCLUDING REMARKS

An analysis of the problem shown in Figure 1 verifies the statements given in [1, section 1]
on body deformation: the results demonstrate that admissible functions (here eigenfunctions
of various types) yield an acceptable representation of body deformation, as suggested by
the expansion theorem detailed in [25, vol I, p. 311] or [26, p. 111]. When the admissible
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Figure 12. Slider/crank mechanism with elastic elements.

functions violate the dynamical boundary conditions, an acceptable representation of the
stresses is obtained by high numbers of shape functions only. In particular, at points where the
admissible functions violate the dynamical boundary conditions a behavior similar to Gibb’s
phenomenon is observed. Quasi-comparison functions (here a combination of eigenmodes
and static modes) result in a significant improvement of the representation of stress.

3. Range of Validity of Linearized Equations

A second example, the slider/crank mechanism shown in Figure 12, is used to demonstrate the
influence of the choice of the body reference frame on the range of validity of the linearized
equations of motion [1, equation (26)]. It is studied by analysing
• the equilibrium configurations I and II of the mechanism, obtained when fixing the angle
β1 to the valuesβ1 = 0◦ andβ1 = 57.3◦, respectively;

• its motion due to a driving torque, sustaining a constant angular velocityΩ1.
To define problems with unique solutions, the friction force in the prismatic joint atD is
assumed to be zero for the determination of the equilibrium configurations.

3.1. DESCRIPTION OF THEMODELS

The multibody model of the mechanism is shown in Figure 13. The models of crank and
coupler are Euler–Bernoulli beams and the slider is assumed to be rigid. The data of bodies
i = 1 and 2 are with reference to the labelling scheme shown in Figure 13 and using notation
by analogy with the previous example:`1 = 0.6 m, `2 = 2.0 m,Ai = 0.0006 m2, J i =
4.5 · 10−10 m4, ρi = 8400 kg/m3 andE i = 7 · 1010 Nm2. The data of body 3 are:m3 =
8.4 kg, I 3 = 0.028 kg m2, whereI 3 is given with respect toO3. The latter point coincides
with the center of massCM3. The axes of the joints are clear from the figures, and the dry
friction coefficient in the prismatic joint (force elementr = 5) is ν = 0.05. The driving
angular velocity isΩ1 = 0.2 rad/s and the gravitational acceleration in the inertial frame is
[0,−g,0]T , g = 9.81 m/s2.

The descriptor form of system representation has been used to solve the problems formu-
lated above. In this form the system motion is described byzI = [ziI ] andzII = [ziI I ], with
ziI andziI I defined in [1, equation (22)], and by the Lagrangian multipliersµ representing the
constraint forces across the joints. In a preliminary analysis the deformationw1

2 of the crank,
as given by Equation (2), is described using the tangent-frame shown in Figure 13 and the
first eigenmode of a cantilever beam. The deformationw2

2 of the coupler is represented using
a chord-frame and the first mode of a simply supported beam. Longitudinal deformations
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Figure 13. Multibody model of the slider/crank mechanism. Nodek, i = 8,0 is atE from Figure 12, where
D = E whenβ1 = 0◦ and when the bodies are not deformed. Vectorn4 represents the axis of joints = 4.

Table 2. Models used to study the effects of substructuring and definition of body reference frame.

wi1, i = 1,2 are neglected for both of the bodies. This model is denoted as model A in Table 2.
The remainder of models to be used later are described in the table in a similar way.

3.2. RESULTS OBTAINED USING MODEL A

The equilibrium configurations I and II and the motion of the mechanism for one revolution
of the crank, as obtained by the model A, are shown in Figures 14 and 15.
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Figure 14. Equilibrium configurations I and II of the mechanism as obtained by model A.

Figure 15. Configurations of the mechanism during motion for times 0≤ t ≤ 22.8 s as obtained by model A.

The motion has been determined by solving the Lagrangian equations of type 1, applying
the DAE-solver ODASSL described in [27]. An equilibrium configuration II, obtained without
considering geometric stiffening, is shown in Figure 14 as well. The shape functions used here
do not satisfy the dynamical boundary conditions and as a consequence the representation of
internal forces turns out to be poor. Details can be found in [28].

The results shown in Figures 14 and 15 demonstrate that the deformations, especially those
of the coupler, are quite large. In case of the equilibrium configuration I (β1 = 0◦), one
observes that the rotational displacement of the beam cross section at the nodek, i = 5,2
becomesϑ5,2

3 = 0.51 rad = 29.5◦. This is far beyond the values acceptable for an application
of the Equations (26) from [1], when linearized assuming the deformations to be small (see
also [1, equations (16) and (20)]).

3.3. MODELS REDUCING THE MAGNITUDE OF DEFORMATION

The magnitude of the deformations may be reduced, considering two possibilities to improve
modelling: one may subdivide the flexible bodies, as proposed in [17], and one may modify
the body reference frame to minimize the magnitude of deformations [1, figure 5]. Various
options will be analyzed now for the case of the equilibrium configuration I, using the models
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Table 3. Values characterising the equilibrium configuration I as obtained with the models defined in Table 2.

described in Table 2. Only chord- and tangent-frames are considered, because the orientation
of a Buckens-frame is not modified as compared to a chord-frame in case of the beam models
used here – for a discussion of the orientation of a Buckens-frame see also [29]. Moreover, a
shift of the origin of the body reference frame to the center of mass, resulting from a choice of a
Buckens-frame, does not affect the magnitude of the angles leading to the problem mentioned
above.

In case of model B, the coupler is subdivided into two bodies, interconnected by a bracket
joint. Deformations of the subbodies are represented by the first eigenmode of a simply sup-
ported beam, as suggested by the boundary conditions of a chord-frame. In model C this
chord-frame is replaced by a tangent-frame, using the first eigenmode of a cantilever beam. In
case of D the coupler is modelled as in B and to reduce the magnitude of deformations of the
crank, a chord-frame is used instead of the tangent-frame.

The models A to D allow an analysis of the size of deformations due to substructuring
and to the choice of body reference frames. The corresponding results for the equilibrium
configuration I are given in Figure 16 and Table 3. Deformations of the coupler are signi-
ficantly smaller when using model B instead of A: angleϑ5,2

3 is reduced from 0.514 rad to
0.209 rad. Model C demonstrates that this is true only when using a chord-frame. The choice
of a tangent-frame does not pay off, when trying to reduce the magnitude of deformation,
a fact, which is suggested also by [1, figure 5]. Angleϑ5,2

3 is reduced by subdividing the
coupler but, as demonstrated by the values ofϑ

2,1
3 for A, B and C in Table 3, the deformation
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Figure 16. Equilibrium configurations I of slider/crank mechanism as obtained by the models A to D andref.
Models A and C result in deformations too large for application of linearized equations.

of the crank is still too large. It is reduced in model D by selecting a chord-frame and the
corresponding eigenmode. This yields a value ofϑ

2,1
3 = −0.132 rad. If this is still considered

too large for linearization, the bodies may be subdivided further, as suggested for theref-model
defined in Table 2.

The analysis demonstrates that the deformations may be kept small enough as to justify
an application of the linearized equations [1, equation (26)]. The goal may be achieved by
subdividing the bodies and using chord-frames. But the previous example demonstrates that
one cannot expect to represent body deformations, and especially internal forces, properly,
when using one mode only. Sources of the deficiencies of the models A to D may be found
by looking at the values of Table 3: whereas models A to C yield coordinatesIρ

2,1
2 of vec-

tor ρ2,1 in the inertial frame, i.e. of the location of nodek, i = 2,1, of ca.−0.13 m, the
same value is lowered to−0.079 m in model D. The problems become even more apparent
when comparing with the solutionanc, obtained with a finite element model based on the
absolute nodal coordinate formulation as described in the last row of Table 2. The results
found with this model (last column of Table 3) can be approximated closely by theref-
model from Table 2. In this case static modes are used to satisfy the dynamical boundary
conditions. The resulting equilibrium configuration I is marked in Figure 16 byref. The plot
cannot be distinguished from the one obtained with theanc-model. Based on the results of this
analysis of the equilibrium configuration I, one can recompute the equilibrium configuration
II and the system motion, using theref-model to obtain more reliable results. Because of the
preliminary analysis, these computations can be done with an efficient model based on the
modal approach. For the analysis of the mechanism motion one may want to add static modes
to satisfy dynamical boundary conditions due to the driving torque.

All of the results have been obtained using Mathematica, Version 2.2. The corresponding
notebook files may be found at http://www.vieweg.de/downloads.

4. Conclusions

The floating frame of reference formulation is based on a separation of the flexible body mo-
tion into a reference motion and a deformation. The definition of the two motions requires the
specification of a body reference frame, which in turn is tied to the choice of shape functions
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in the Ritz method. Two statements have been verified by discussion of the derivation of the
system equations in [1] and the examples considered here:
1. The modal approach to represent body deformation may reduce the number of system

variables considerably and thus increases computational efficiency, but it raises the prob-
lem of how to select the shape functions. Quasi-comparison functions, obtained by com-
bining eigenfunctions (satisfying equations resulting from the definition of the body refer-
ence frame) with static modes to satisfy the dynamical boundary conditions, significantly
improve the representation of internal forces, i.e. stresses. This statement applies for any
choice of the body frame and the corresponding shape functions, but specific choices
may require less variables than others. The effort required for selection of the suitable
quasi-comparison functions pays off: in addition to an increased efficiency of multibody
simulation, it often eliminates the need for finite element post-processing the simulation
results to obtain the stresses.

2. The linearization of the system equations requires the deformations to be as small as
possible. This is guaranteed by selecting a so-called Buckens-frame as a body reference
frame. If the orientation of the Buckens-frame is not significantly affected by deformation,
a properly chosen chord-frame serves the purpose as well. In addition, deformations can
be kept small by subdividing flexible bodies. A preliminary analysis of simple problems
may provide the numbers of subbodies and shape functions required for the representation
of deformation and internal forces in more complicated problems. Efficient models, found
by following such routes, increase the efficiency of multibody system analysis.

In sumary, the results improve the computational efficiency of multibody codes and they
increase the range of validity of the linearized system equations, often used in the floating
frame of reference approach.
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