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Abstract. Throughout the past decades a considerable amount of work has been dedicated to the development

and application of formalisms to simulate flexible bodies in a multibody system (MBS). The two most common

approaches to describe the deformation of a flexible body with respect to their floating frame of reference are to

apply the linear finite element formulation and the linear modal approach using global mode shapes.

On the field of flexible body modelling, this paper discusses two topics: a) the consideration of quadratic

terms in the equations of deformation and b) the presentation of methods for global mode preparation to reduce

the computer time for dynamic simulations without loss of accuracy regarding deformations.

The proposed methods are applied in two examples, for the deformation of a stabilisation linkage of a car's

front suspension and for the simulation of the deployment of a flexible solar array.
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1. Introduction

For the simulation and analysis of flexible mechanical systems, the multibody system (MBS)

theory is applied. In this methodology, a flexible multibody systems is based on the floating

frame of reference formulation with superimposed deformations. Then the flexible body motion

is the sum of a large reference motion and small deformations. The displacement field due to

deformation is approximated by summing the products of known shape functions and unknown

weighing coefficients. The shape functions may be obtained using the finite element approach,

where local polynomial functions represent the nodal coordinates or the modal approach, where
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global eigenfunctions or static displacement fields represent modal amplitudes. The latter

approach reduces the system order but gives rise to the problem of selecting the shape

functions. In the following we assume that the strain and displacements are small, but

shortening and tilting effects due to high loads should be considered during calculation of the

displacement field. The material law is linear.

The multibody system software SIMPACK [4] is based on the formulation above, and the

data of flexible bodies are taken from the SID file, and prepared in pre-processors SIMBEAM

[10] for spatial beam structures and in FEMBS for general spatial finite element structures in

connection with all important commercial finite element software like ANSYS, NASTRAN,

etc. The pre-processors generate all mass and stiffness data needed in SIMPACK including

geometric stiffness matrices. These prove to be important when buckling or stiffening effects

due to large longitudinal loads have to be taken into account [11].

As shown in [10], [3] the linear theory of elasticity is often not accurate enough when

structures experience loads that approach the critical loads for buckling and tilting or when

spatial bending effects are considered. In such cases a non-linear beam theory or a substructure

technique is more suitable. In this paper, kinematic displacement computations are made using

also the quadratic terms. The method is implemented in SIMPACK and all required matrices

can be pre-calculated in SIMBEAM.

The advantage of the modal approach is the small number of degrees of freedom, thus

reducing the computational burden considerably compared to the nodal approach. The modal

method however requires the pre-calculation of the mode shapes to be used (for example by

solving eigen systems or static problems) in advance of the simulations. As many authors have

shown, the quality of results obtained with the modal approach depends (besides numerical

aspects) exclusively on the quality of the mode shapes used in the simulations, that is on how

accurate the mode shapes can represent the real deformations. Thus since the actual loads, load

frequencies and deformations of the bodies are usually not known beforehand, the choice of

mode shapes is often random (assumed modes), as are the results of such simulations. It is

known that even a very small number of proper mode shapes can lead to results close to or

equal to those obtained with a FE approach.

This paper discusses methods for a proper selection of mode shapes in advance of the

simulations and compares results using both the nodal and modal approach. Additionally, the
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influence of the geometric stiffness matrices and kinematic displacement computation with

quadratic terms is studied. The results are compared with results obtained using ANSYS and

the nonlinear absolute nodal coordinate formulation (ANCF) [2].

The first example of a stabilisation linkage of a car's front suspension (Figure 1) is a spatial

beam structure that is modelled using SIMBEAM. Static and dynamical load cases are simulated

using SIMBEAM and SIMPACK. The second example is a flexible satellite solar array (Figure

2). The goal of the simulation is to compute the flexible behaviour during deployment. In

addition to [12] new methods for mode shape creation are applied to increase accuracy and to

reduce the computational burden. The mode shapes of the flexible bodies (yoke and six panels)

are created using NASTRAN and FEMBS and the deployment simulation is made using

SIMPACK.

Linkage

Figure 1.   Stabilisation linkage of a car's front suspension.

Figure 2.   Deployment of a flexible solar array.
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2. Basics on Flexible Multibody System Theory

A brief description of the equations of motion of a flexible multibody system as published in

many papers [5, 7] is given to explain the notation and to give an overview of the assumptions

made for such formulations.

Consider a multibody system of n bodies where the motion is described by a set of position

and velocity variables zI
i (t) and zII

i (t), respectively for each body i. A multibody system may

now be obtained from the general model of continuum mechanics by formulating three types of

constraint equations: (1) definition of the models of bodies (i.e. finite element models, beams,

etc.) to be used for a specific analysis; (2) introducing a specific floating frame of reference to

describe body deformations; (3) constraints due to joints between the nodes on the bodies. The

explicit form of constraints of types 1 and 2 relates the displacement field of all the points of the

multibody system to the variables zI
i  and zII

i , where ż Z zI
i i

II
i= . Holonomic constraints of

type 3 due joints a = 1, .. nc, between bodies i and j can be written implicitly as
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Formulating all types of constraint equations and applying one of the principles of dynamics,

one can generate the system equations in descriptor form or in state space form. An intermediate

result of such a derivation of the equations of motion for a system of n flexible bodies is the

virtual power expression due to inertia, internal forces of elasticity and applied body and

surface forces

d wP II
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II
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= - + + + + +( ) =
=

Â ddz M z h h h h h˙ 0
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The matrices ddzII
i  are the virtual velocities, belonging to the generalized velocities zII

i , Mi  and

hc
i  are the corresponding generalized masses and constraint forces, respectively. hw

i  are

generalised inertia forces due to motion of the body reference frame, he
i  represents the internal

forces due to deformations, and hg
i  and h f

i  consider gravitational forces and nodal forces and

torques on body i, respectively.
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Jourdain's principle states that the virtual power of the constraint forces, result of all types of

constraints, is zero. In Equation (2), the virtual power expressions due to constraints of type 1

and 2 do not appear, but the virtual power due to constraints of type 3 is given explicitly. The

expression

M z h h h h hi
II
i i

e
i

g
i

f
i

c
i˙ = + + + +w   (3)

together with Equation (1) are the equations of motion of a body i, where hc
i  are the generalised

constraint forces due to joints on body i.

In this formulation the flexible body motion is separated into a motion of a floating frame of

reference and small deformations. The displacement field due to deformation is approximated

by summing the products of known shape functions and unknown weighing coefficients, called

the elastic coordinates. Hence, the absolute position r of a point P at physical coordinate   R   on

body i at time t is given by the absolute position ri  of the body reference frame { , }Oi ie  with

respect to the inertia frame { , }OI Ie  and the relative position r R( ) , see Figure 3. Here and in

all the following, vectors are expressed in coordinates of the body reference frame and are

indicated by a bold letter, but the time dependence of variables is not always written.

P

R

P

i

{O i, e i }

 k

r k

R k
u k

u
r

node k on body i
body i

(reference configuration)

body i
(actual configuration)

inertial coordinate system {O I, e I }

coordinate system {O k, e k }
in actual configuration

coordinate system {O k, e k }
in reference configuration

Figure 3   General model of a flexible body i.
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The absolute position of P is expressed as

rr rr( ) ( ) ( ) ( )R r R r R R u R= + = +i where , (4)

and where u(R, t ) is the elastic deflection at R.

The absolute orientation of a coordinate system { , }P e  attached to a section of a body (in

case of beam models attached to the beam section at    R   1) or of a frame { , }Ok ke  at a node k  on

body i (Figure 3) is given by the product of the orientation matrix A i  of the body reference

frame with respect to the inertia frame and the orientation matrix QQ( )R  of the section frame with

respect to the body reference frame as

A R R A e A R e( ) ( ) ( )= =QQ i I     satisfying      (5)

Matrices Ai  and QQQQ are parameterised by angles aai t( )  and JJ( , )R t  , respectively.

Linear velocity v and angular velocities wwww of a body section at point P are derived by

differentiation of Equation (4) with respect to time and using the Poisson formula on Equation

(5), thus
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      satisfying

where         and    = ( )

(6)

Note that vi  and wwi  are the linear and angular velocities of the reference frame. Variables rri ,

A i , vi  and wwi  depend on time t and describe the motion of the reference frame of body i.

Variables r, QQQQ, ṙ , and w or u, JJJJ, u̇, and J̇J depend on coordinates R and time t and represent

the deformation of the body. Referring to the specific floating frames of reference such as

tangent frame, cord / plane frame, or Tisserand / Buckens frame, u and JJJJ have to satisfy six

constraints of reference conditions given in [7].

The deformation variables in Equations (4) to (6) are approximated by known shape

functions ffff(R) and time dependent weighing coefficients or elastic coordinates qi(t). In general

we can write
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It is assumed that mode shape matrices ffff(R) or FFFF(R) satisfy both the constrains of the chosen

continuum model (type 1) and the chosen reference frame (type 2). Thus, the elastic coordinates

qi are independent of these types of constraints.

Using a linear material law but still a nonlinear strain-displacement relation the virtual power

of the internal forces defined in Equation (2) are derived by

d d d dP dVi
i

II
i T

e
i T

V

iT i

i

= - = - = -Úz h q k˙ ˙ee ss
0

, (8)

where strain eeee, virtual strain velocity d ėe  and stress ssss are given as

ee ee ff ee
ee

( , ) ( , ) , ˙( ) ( , ) ˙R q R B R q q B
q

t i i i
i= = =d d ∂

∂
, , (9)

ss ee ss( , ) ( ) ( , ) ( )R H R R Rt t= + 0 (10)

to give the general internal forces of body i as a nonlinear function of qi

k q B B R q H R qi i T

V

T i i

V

dV dV
i i

( ) ( , ) ( , )= = +( )Ú Úss ee ss
0 0

0 (11)

In Equations (9) to (11), B is the nonlinear strain matrix, H is Hooke's matrix, ssss0 is the matrix

of initial stresses and V i
0   is the body volume in the reference configuration.

The equations of motions due to deformations with respect to the reference frame are derived

as

M q D q k q R q p Re
i i

e
i i i i T i i t˙̇ ˙ ( ) ( , ) ( , )+ + = ÚÂ FF (12)

where Me
i  is the generalized mass matrix, De

i  is a matrix of structural damping and pi is the

matrix of nodal, volume, and inertia forces and torques. Me
i  is obtained when introducing a

matrix of mass properties pppp containing density r and inertia moments j1, j2, j3 as
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Me
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V

dV diag j j j
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0

1 2 3, r r r (13)

All matrices of a flexible body are saved in the SID file where the space dependent integrals are

computed in pre-processors such as SIMBEAM or FEMBS together with FE-software, [9].

Finally, the position, velocity and virtual velocity variables of body i  introduced in

Equations (1) to (3) are given as
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containing the variables of the reference motion and the elastic coordinates of deformation. All

other matrices are given in [5, 7]

2. Approximation Models for Deformation Field

Ever since multibody programs have come into existence, various models to approximate the

displacement field due to deformations have been discussed, see e.g. [8]. In this report six

models are discussed that are briefly described as follows:

(A) Finite element discretisation where the deformation is linearly approximated by an

interpolation matrix, nodal coordinates and linear strain and stress relations.

(B) Extension of model (A) by consideration of initial stresses and their linear terms in the

nodal coordinates, the so-called geometric stiffness matrix.

(C) Finite element discretisation where the deformation is quadratically approximated by the

interpolation matrix, nodal coordinates, linear strain and stress relations and initial

stresses.

(D) Reduction of the computational burden in MBS dynamical simulations using the modal

approach. Model (C) is reduced to a matrix of mode shapes taken from an eigenvalue or a

static analysis.

(E) In addition to eigenmodes frequency response modes [1] are prepared for the mode shape

matrix as explained in (D).
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(F) The mode shapes taken from models (D) and (E) are selected using participation factors

[12].

For comparison of these models, results are partly taken from a nonlinear finite element

theory – here the absolute nodal coordinate formulation (ANCF) [2] and ANSYS. The six

models are described in detail next.

2 . 1 Model (A) – Linear FE Formulation

The simplest model is a linear expression of the deformation field in Equation (7). Thus, the

deformation field of an element e at all local element points x is described by the interpolation

matrix Ne(x) and nodal element coordinates ze(t). One finds the following relations for the

deformation, strain eeee and stress ssss of element e  (denoted by the superscript e)

d R N x z d R N x ze e e e e et t t t( , ) ( ) ( ), ˙ ( , ) ( ) ˙ ( )= =      and (15)

ee ee ss eee
L
e e

L
e e e e et t t t( , ) ( ) ( ) , ˙ ˙ , ( , ) ( ) ( , )x B x z B z x H x x= = =d d , (16)

where x R R= - e  and Re is the position vector of the local element frame, BL
e  is the linear

strain and He the linear Hooke matrix of an element e.

The motion of all elements can be written by all global nodes forming the nodal coordinate

vector zF of the unsupported finite element (FE) structure. Finally, a nodal state vector yF of

the supported structure embedded into the MBS floating frame of reference is introduced,

satifsying both,

z T ze e
F=    and  z J y J zF F F F F= + , (17)

where Te ist a transformation matrix and JF and JF  are projection matrices for the free and

locked motions of the FE-boundaries. In Equation (17) the supported node motion zF  is

mostly zero. This leads with the identy q yi
F∫  and Equation (15) in accordance to (7)

d q R N x T J= ∫ =FF FF FFi
L

e e
F      where      ( ) ( ) . (18)

FFL  is the linear mode shape matrix. From Equations (15) and (16) one derives the internal

forces and the mass matrix as given in Equations (11) to (13)
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Ke and Me respectively are the element stiffness and mass matrices.

For various models of finite elements, interpolation matrices and their stiffness and mass

matrices are given in standard FE books. Model (A) is only useful for small elastic

deformations. The loads should be small compared to critical loads, for example for buckling

and tilting.

2 . 2 Model (B) – Geometric Stiffness Matrix

Model (A) is extended by initial stresses ssss0 as shown in Equation (10) and a bilinear term in the

virtual strain velocity, Equation (9). This bilinear term may be derived by a geometrically

nonlinear theory, for example for beam [5] and plate models. With the interpolation matrix

given for model (A), one finds instead of Equations (16) and (19)  

ee ss ee sse
L
e e

L
e eT

Q
e e e e e

o
e= = +( ) = +B z B z B z H, ˙ ˙ ,de da a a (21)

k q K K q K J T K T Ji i
e
i i i i

F
T eT e e

F
e

( ) = +( ) = ( )Âgeo geo geo,  . (22)

In Equation (21) subscript a depends on the strain variables of a FE model. Matrix K geo
i  is the

geometric stiffness matrix. The element matrix K geo
e  leads to the specific initial element stresses

sso
e  that are caused by initial loads on FE structures.

Applying the linear theory of elasticity, the actual geometric stiffness matrix of an element

can be expressed as a superposition of single load cases Lj  on body i and unit geometric

stiffness matrices 
  

)
K geoj

e   that are pre-calculated for unit loads. This gives unit stresses ssoj
e , see

e.g. [11],

K K K Bgeo geo geo
e

j
e

j
e

j
j

Q
eT

j
e e

V

L dV
e

= =Â ÚÂ
) )

, a a
a

s 0
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(23)
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For the deformations and the mass matrix, Equations  (18) and (20) are still applied.

Model (B) allows to calculate the critical buckling and tilting load for beam structures and to

take other stiffening effects into account, for example on rotating structures. On the other hand,

it should be noted that the model does not compute nonlinear displacements such as the

shortening of a beam when bent.

2 . 3 Model (C) – Quadratic Formulation of Deformations

Applying nonlinear theory, for example for a beam element, the Cartesian deformation variables

d contain quadratic terms and are expressed by integrals of the beam deformations such as

longitudinal strain e and the three curvatures ka. The strain relation (21) is still valid, but for d

= (da) instead of Equations (15) and (18) one writes with the linear shape function matrix

N NL
e

L
e= ( )a  and a 6¥6 quadratic expansion shape function matrix NQ

e
a , for direction a,

d

d

L
e e eT

Q
e e

L
i iT

Q
i

a a a

a a a a

( ) ( ) ( )

( ) ( ) ( ) , ,...

x N x z z N x z

R R q q R q

= +

= + =

1
2

1
2 1 6

and

FF FF
(24)

Note that FFQa  is a nq ¥nq  matrix given as

FFQ
T eT

Q
e e

e
a a( ) ( )R T T N x T T= ( )Â . (25)

If the longitudinal stress and the bending moment of a beam element is constant with respect to

the central axis x, then matrices NQ
e

a  at node k are equivalent to the negative values of the unit

geometric stiffness matrices 
  

)
K geo j

e , where j denotes the load case at node k in direction a .

More details are given in [10].

Model (C) gives better results than models (A) and (B) if the actual loads approach the

critical loads for buckling or tilting or if three dimensional bending and torsion motions of beam

elements are analysed.

2 . 4 Model (D) – Modal Transformation

The modal approximation is applied. The deformation of the FE structure of a body i is given

by Equation (12) where damping is neglected and internal forces are incorporated by a simple

stiffness matrix as given in Equation (19). This leads the equations of motion of a FE-structure



12   O. Wallrapp and S. Wiedemann

M y K y pe
i

F e
i

F L
T i˙̇ + = ÚÂ FF , (26)

where yF is the vector of nodal coordinates of the supported FE structure. The length nyF  of

yF  is in general very large.

With Equation (26) eigenvectors and static displacement fields due to specific load cases

(static modes) can be created to give a small number (nq ) of mode shapes that are taken into ac-

count in the dynamic MBS simulation. The selected mode shapes form the mode matrix Se with

dimensions nyF  times nq. This yields the new mass, stiffness (modal) and mode shape matrices

as

y S q

M S M S K S K S S

F e
i

e
i

e
T

e
i

e e
i

e
T

e
i

e e

=

= = =

and

: , : , :FF FF
(27)

respectively, with the reduced dimension nq to approximately describe the deformation of the

flexible body as shown in Equation (12). It should be noted that for model (B) also the

geometric stiffness matrix K geo
i  and for model (C) the quadratic mode shape matrices FFQa

have to be transformed to modal form. If all modes shapes are orthogonal the modal mass

matrix can be scaled to give an identity matrix.

In general, the lower eigenmodes are more important than the higher frequency modes, and

static modes increase the accuracy of the modal approximation, see e. g. [6, 7].

2 . 5 Model (E) – Using Frequency Response Modes

In addition to eigenmodes the author of [1] proposes a set of frequency response modes that

can be computed if harmonic loads pk with a main excitation frequency W0 at nodes k can be

estimated. With the approximation ˙̇q qF F= -W0
2 , Equation (26) gives

- +( ) =M K y pe
i

e
i

Fk L
T

kW0
2 * FF (28)

and the solution is a displacement field yFk
* , the so-called frequency response mode.

Eigenmodes and frequency response modes form the mode matrix Se with dimensions nyF

times nq. The modal transformation is done as described for model (D).
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2 . 6 Mode Selection Using Participation Factors

As proposed in [12], accounting for the joints and loads acting on a flexible body during MBS

simulations the selection of mode shapes can be done using pre-calculated participation factors.

First a large number of mode shapes and the corresponding modal equations as shown in model

(D) are created. Second, loads such as nodal and inertial forces or torques are assumed or

estimated. Third, a simple static analysis of this system gives deformations at interesting points

of the body that are weighted with the used mode shapes to give the (participation) factors.

Scaled factors smaller than a desired value indicate that the share of the corresponding mode

shape in the overall deformation is less than this value and may be neglected. The remaining

modes are taken into account for time simulations.

It is noted that the participation factors are computed for only one situation or point in time

and have to be computed for each individual force and joint configuration. However, when

using the method to save computer time the factors would be computed for the most interesting

force and joint configurations to give good results for these critical points in time.

The approach is based on the assumption that modes shapes and modal mass and stiffness

matrices are prepared for a corresponding floating frame of reference (e.g. a Buckens frame or

a tangent frame) and the deformations have no significant backward influence on the body

reference motion. Therefore, dominant applied and constraint forces and torques due to force

elements, joints, external surface and body loads can be taken from a "simple and quick" rigid

body simulation. The equations of motion with respect to the body reference frame (the

equations of deformation) are expressed by the coordinates qi and q̇i , the third row of zI
i  and

zII
i   in Equations (14). Thus, from Equation (3) one extract the equations of deformation, when

neglecting Coriolis and damping terms, (for more details see [5, 7]),

C v C M q K q C v g O
F

L
t
i i

r
i i

e
i i

e
i i

t
i i i i

e
i

q
i kiT

ki

ki
k

˙ ˙ ˙̇ ˜+ + + = - -( ) - +
Ê

ËÁ
ˆ

¯̃
Âww ww ww FF0 (28)

Here vi, wwwwi are the linear and angular velocity of the reference frame, wwq
i  contains the quadratic

terms of wwwwi, Ct
i , Cr

i , and Oe
i

0 are corresponding mass coefficient matrices, Fki and Lki are

nodal forces and torques at node k including applied and constraint forces, and FFFFki is the mode

shape matrix for node k.
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Since the constraint forces at joints on the body are conform with the applied forces upon the

body, Equation (28) describes the deformations of the body with respect to the constrained

floating frame of reference. With the assumption ˙̇q qi i= -W0
2 , where W

0
 is an assumed

excitation frequency to consider inertia forces, from Equation (28) the following LAEs for the

elastic coordinates qi  are solved

  

K M q h

h C v v g C O
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e
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˙ ˜ ˙ww ww ww FF
1 24444444 34444444

1 244 344

(29)

From the solution of Equation (29) the deformation of the body can be linearized and

calculated using Equations (7) and (18). Thus, the three translational and three rotational

deformations of a nodal frame at node k on body i  are
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The modal participation factors (MPF) of translational and rotational deformations are defined
as
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and represent the contribution of mode l to the total elastic motion of node k along or about a .

Since all modes are orthogonalized and thus have no mutual coupling, the coordinates qi

computed before can be used again together with the FFFFki to give an estimate of the errors when

using a selection of mode shapes compared with the results when using all modes. These errors
ea can be computed for all six degrees of elastic freedom a of node k using
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where nq all
i
,  indicate the set of all modes and nq sel

i
,  the set of selected modes. It is noted that

using Equation (32), the errors are absolute and in the correct physical units of either meters or

rad.

3. Simulations of a Stabilisation Linkage

The models for the approximation of the deformation field of a flexible body within a MBS are

tested first on a stabilisation linkage of a car front suspension, see Figure 1. The spatial curved

linkage as shown in Figure 4  is modelled by a 3D beam mesh using 20 nodes for the physical

points and an additional node k = 21 for the body reference frame. The mesh has 19 beam

elements, thus the mesh leads to a polygon curve of the beam's central line. The number of

DOF's of the unsupported structure is nF = 120, the number of DOF's of the constrained

linkage is nq
i  = 114. The cross section area of linkage is like a circle with diameter 0.019 m, the

material is steel.

In Figure 5 the first eigenmode of the unsupported linkage is plotted, using the Buckens

frame of reference. The values of the first ten eigenfrequencies are 45.0, 96.7, 113.0, 118.2,

202.4, 286.1, 335.9, 367.9, 430.5 and 521.6 Hz. To discuss the described approximations for

deformations, the linkage is constrained at various nodes and loaded by a spatial force F and

torque L at node 20, thus p20 = (Fx Fy Fz Lx Ly Lz)
T. The specific load cases are listed in

Table 1.
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Figure 4.  FE-mesh of the stabilisation linkage.
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Figure 5.  First eigenmode of the unsupported linkage.

Linear vs. quadratic approximation

To discuss the effects of a quadratic approximation field of the deformation, the linkage is

analysed for load cases 1, 2 and 3. For load case 3 the deformed and undeformed linkage are

plotted in Figure 6. Table 2 lists the results of the displacements at node 20, d20 = (ux uy uz Jx

Jy Jz)
T. Here the results obtained with the ANCF method serves as the reference solution with

360 DOF's. For comparison, nonlinear ANSYS results of a model with 600 DOF's are also

given in Table 2.

For the three load cases, the error of the linear model (A) for the displacement uy is very

large. With a growing force (compare case 1 and case 2) also other displacements show errors

larger than 3 %. Model (C) dramatically reduces the errors for load case 2 from 33 % to 3.5 %.

This implies that the quadratic approximation of the deformation field is a powerful model to

describe deformations far beyond the linear case. However, for load case 3 the linkage is

largely deformed due to the quadratic formulation, see Fig 6.
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Figure 6.  Deformation of the linkage for load case 3.
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Nodal vs. modal approximation and mode selection

In the following simulations the modal approximation with a model reduction is applied. With

the modelling options in SIMBEAM and SIMPACK, eigenmodes of the unsupported linkage

with a Buckens frame of reference are prepared. It should be noted that for the modal

formulation the linkage suspension (six constraints) has to satisfy Equation (1). The six

coordinates of the reference frame must be included in the equations of motion, Equation (3),,

together with six Lagrange multipliers representing the constraints. The number of DOF's is

thus nq + 12. For all models a linear theory of deformation is applied, but body reference

motions are computed nonlinearly in SIMPACK.

Besides a simple truncation of higher eigenmodes, a mode selection using participation

factors as described in section 2.6 is applied. For load case 2 a graph of factors is plotted in

Figure 7. In the fist case, these19 eigenmodes are selected: 1 to 10, 12 to 16, 18, 26, 26, and

27. For load case 3 and 4 with other constraints, a new set of eigenmodes is prepared using

participation factors: 14 eigenmodes with the numbers 1 to 6, 8, 9, 11, 12, 14, 16, 26, and 27

are used.

To increase the accuracy of the results, two sets of frequency response modes for an

excitation frequency of W0 = 20 Hz with forces at nodes 1 and 20 for load case 2 and at nodes

1, 7, 14 and 20 for load cases 3 and 4 are prepared using Equation (27), in addition to a few

number of eigenmodes. The simulation results are listed in Table 3. To test the mode selection

for dynamical models, a harmonic load function (load case 4) is applied. Figure 8 shows the

computed displacements uy and uz (t).

Since the linkage is a 3-dimensional structure, all bending and torsion modes are excited by

loads at node 20. Thus only a wide range of eigenmodes can describe the deformation of the

body correctly, as shown by the participation factors in Figure 7. It is seen that modes 11 and

17 are not important for the load case 2, whereas modes 26 and 27 are. From Equation (32), an

error of -10 % is estimated for displacement ux at node 20. This value is near by -11 % found

by SIMPACK, see Table 3, laod case 2, model approximation 19 em-pf.

A mode selection using participation factors for load case 2 reduces the error from 46 % to

20 % at maximum with respect to the nonlinear results. This mode set needs 100 times less

CPU time for load case 4 than the full model with 114 modes while the displacements are
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similar, see Figure 8. A set with 9 modes allows for main deformations but cannot correctly

represent y-motion. Table 3 and Figure 8 also show that even using only 3 eigen-modes

together with 12 frequency response gives results in close agreement to the reference of the full

model. The reason is that the frequency response modes are a mixture of both static and

dynamic modes and account for correct boundary conditions.
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0.1
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100.0

for ux at Node 20

Participation Factors in %

Mode Number

for y at Node 20

Figure 7.  Participation factors of the linkage for load case 2.
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Figure 8.  Displacements ux  and uz of the linkage at node 20 for load case 4.

em = eigenmodes, pf = selected using participation factors, frm = frequency response modes.



Comparison of Results in Flexible Multibody Dynamics  19

4. Simulation of the Deployment of a Solar Array

Due to the complexity of this model as shown in Figure 2 and the fact that about 500 real time

seconds must be covered, time simulations using nodal coordinates to serve as a reference for

the true deformations or their best approximations cannot be made in a sensible amount of time.

Consequently only a modal representation of the deformation of the flexible bodies can be

applied.

In reality the deployment of the solar array basically takes place in three steps, see Figure 9 and

[12]. In the first step some fixations are released and the deployment springs with a constant

torque start working on the yoke and panels, trying to move them. However, since all panels

and the yoke are connected via flexible closed cable loops and since the yoke cannot move due

to a motor gear unit not activated yet, the springs drive the bodies versus the cables, starting a

damped oscillation. This is called jump-out. The second step is the activation of the motor gear

unit after 250 seconds, which slowly and smoothly turns the yoke and thus all connected

panels. The last step is the final deactivation of the motor gear unit and the activation of lock

mechanisms when the array is completely deployed after about 360 seconds.

Figure 9.   Shots of the solar array deployment steps.

In the following four models are used. Noting that all eigenmodes (em) are computed for free-

free structures and all frequency response modes (frm) are computed for the true joint and force

configurations, the models are in detail:

(1)  yoke with 15 em, panels with 8 em (604)

(2)  yoke with 19 em, panels with 8 em (690)

(3)  yoke with 5 em + 11 frm, panels with 8 em (583)

(4)  yoke with 5 em + 11 frm, panels 5 em + 13 frm (1953),
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where the brackets give the necessary CPU time in seconds.

According to what was said before participation factors for free-free eigenmodes of the yoke

and panels are computed for the static equilibrium phase after the jump out and after complete

deployment, since these are the interesting points in time. Figure 10  show the simulation

results for the flexible displacements of a marker in the middle of the last panel in x and about y

-axis.

Figure 10 shows an increasing deviation of the results for an increasing number of used frm.

For the case at hand the simulation results are basically determined by two very different groups

of mode shapes: the first few em are very suitable for representing the biggest part of the energy

or, in other words, of the overall deformations. The frm on the other hand were computed

letting W0 = 2 Hz in Equation (28), which after making the mass and stiffness matrices

orthogonal gave frequencies ranging from 2 to 800 Hz, thus representing mostly high

frequency oscillations. As expected, these oscillations represent only small amounts of energy

with the main panel plane almost staying at rest while all little appendages and flanges are

moving furiously. But it is exactly these points where the above mentioned cable loops are

attached. It is therefore believed that modes that represent these special motions of the

appendages give results closer to reality than other modes. With these findings the proper

strategy of mode selection would be to apply the participation factor method to find say, the

four or five most important low frequency eigenmodes for the most interesting force

configurations to represent the overall flexible behaviour and to use the frm method to find the

high frequency modes that represent motions of interesting physical locations on each flexible

structure. Further research on this topic is on the way.
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Figure 10.  Displacements of the last panel.

5. Conclusion

This paper discusses the influence of a nonlinear formulation of flexible deformations using

second order terms and presents methods for a proper selection of mode shapes for dynamical

multibody analyses.

It is found that using quadratic terms to describe deformation proves beneficial if large forces

are acting on slender structures that show effects of coupled tension, bending and torsion, as is

the case for the example stabilisation linkage.

For extended simulations such as the deployment of a solar array in space only a modal

representation of deformations is practical, giving rise to the problem of selecting proper

modes. Here we propose the use of participation factors to select eigenmodes for representation
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of the main deformations and to use frequency response modes to represent high frequency

local flexible motions at the spots of interest. An estimation error of the deformations

displacements can be found for the reduced mode shape model with respect to a model

including all available mode shapes.
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List of Figure Captions

Figure 1.   Stabilisation linkage of a car's front suspension.

Figure 2.   Deployment of a flexible solar array.

Figure 3    General model of a flexible body i.

Figure 4.   FE-mesh of the stabilisation linkage.

Figure 5.   First eigenmode of the unsupported linkage.

Figure 6.   Deformation of the linkage for load case 3.

Figure 7.   Participation factors of the linkage for load case 2.

Figure 8.   Displacements ux  and uz of the linkage at node 20 for load case 4.

em = eigenmodes, pf = selected using participation factors, frm = frequency response modes.

Figure 9.   Shots of the solar array deployment steps.

Figure 10.   Displacements of the last panel.
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List of Tables

Table 1.  Load cases for simulations of the linkage.

Load
Case Suspension Forces at node 20 Torques at node 20

1 clamped at node 1 30, 30, 30 N 0, 0, 0 Nm

2 see 1 100, 100, 100 N 0, 0, 0 Nm

3 x at node 1

x, y, z at node 7

x, z at node 14

0, 0, -1000 N 0, 0, 0 Nm

4 see 3 0, 0, 1000 · sin (2 p t ) 0, 0, 0 Nm

Table 2.  Deformation of the linkage for load cases 1, 2 and 3. 

For models (A) to (C) the errors are given with respect to ANCF or nonlinear ANSYS results.

Load Model of Displacements / Error in % at node 20

Case approxim. uxmm uy mm uz mm Jx rad Jy rad Jz rad

1 ANCF 16.119 3.3638 14.771 0.01768 0.00745 -0.0231

(A) 1 9 1 1 1 1

(B) -1 8 0 0 1 0

(C) 0 1 0 0 -1 0

2 ANCF 53.034 9.1563 47.936 0.05726 0.02428 -0.0753

ANSYS 53.002 9.1400 47.901 0.05731 0.02432 -0.0754

(A) 2 33 4 4 3 3

(B) -2 30 2 2 2 1

(C) 0 4 1 1 3 1

3 ANSYS 4.9446 -1.3406 -51.328 -0.0466 -0.2123 0.0093

(A) -83 -186 44 42 44 -124

(B) -100 -178 4 -3 9 -134

(C) -31 52 5 -2 8 -74
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Table 3.  Deformation of the linkage for load cases 2 and 3. 

The errors are given with respect to nonlinear ANSYS results. 

em = eigenmodes, pf = selected using participation factors, frm = frequency response modes.

Load Model of Displacements  / Error in % at node 20

Case approxim. uxmm uy mm uz mm Jx rad Jy rad Jz rad
2 ANSYS 53.034 9.1563 47.936 0.0573 0.02428 -0.0754

all 114 em 1 2 3 3 13 2

first 10 em -27 24 -39 -32 -40 -17

first 15 em -22 18 -27 -19 -46 -13

19 em-pf -11 13 -16 -13 -9 -10

3em+12frm 2 2 4 5 -11 2

3 ANSYS 4.9446 -1.3406 -51.328 -0.0466 -0.2123 0.0093

all 114 em -9 -57 0 0 4 -89

14 em-pf -9 -54 0 2 3 -83

3em+12frm -9 -57 0 0 4 -89


